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Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the
ANSI C programming language and organized in the form of a callable
library. It is intended for solving linear programming (LP), mixed integer
programming (MIP), and other related problems.

1.1 LP problem

GLPK assumes the following formulation of linear programming (LP) prob-
lem:

minimize (or maximize)

z = c1xm+1 + c2xm+2 + . . .+ cnxm+n + c0 (1.1)

subject to linear constraints

x1 = a11xm+1 + a12xm+2 + . . .+ a1nxm+n

x2 = a21xm+1 + a22xm+2 + . . .+ a2nxm+n

. . . . . . . . . . . . . .
xm = am1xm+1 + am2xm+2 + . . .+ amnxm+n

(1.2)

and bounds of variables

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

. . . . .
lm+n ≤ xm+n ≤ um+n

(1.3)
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where: x1, x2, . . . , xm are auxiliary variables; xm+1, xm+2, . . . , xm+n are
structural variables; z is the objective function; c1, c2, . . . , cn are objec-
tive coefficients; c0 is the constant term (“shift”) of the objective function;
a11, a12, . . . , amn are constraint coefficients; l1, l2, . . . , lm+n are lower bounds
of variables; u1, u2, . . . , um+n are upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows
of the constraint matrix (i.e. a matrix built of the constraint coefficients).
Similarly, structural variables are also called columns, because they corre-
spond to columns of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and
upper bounds can be equal to each other. Thus, the following types of
variables are possible:

Bounds of variable Type of variable
−∞ < xk < +∞ Free (unbounded) variable
lk ≤ xk < +∞ Variable with lower bound

−∞ < xk ≤ uk Variable with upper bound
lk ≤ xk ≤ uk Double-bounded variable
lk = xk = uk Fixed variable

Note that the types of variables shown above are applicable to structural as
well as to auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all struc-
tural and auxiliary variables, which:
• satisfy to all the linear constraints (1.2), and
• are within their bounds (1.3), and
• provide the smallest (in case of minimization) or the largest (in case

of maximization) value of the objective function (1.1).

1.2 MIP problem

Mixed integer linear programming (MIP) problem is LP problem in which
some variables are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordi-
nary (pure) LP problem (1.1)—(1.3), i.e. includes auxiliary and structural
variables, which may have lower and/or upper bounds. However, in case of
MIP problem some variables may be required to be integer. This additional
constraint means that a value of each integer variable must be only integer
number. (Should note that GLPK allows only structural variables to be of
integer kind.)
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1.3 Using the package

1.3.1 Brief example

In order to understand what GLPK is from the user’s standpoint, consider
the following simple LP problem:

maximize
z = 10x1 + 6x2 + 4x3

subject to
x1 + x2 + x3 ≤ 100

10x1 + 4x2 + 5x3 ≤ 600
2x1 + 2x2 + 6x3 ≤ 300

where all variables are non-negative

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

At first this LP problem should be transformed to the standard form
(1.1)—(1.3). This can be easily done by introducing auxiliary variables,
by one for each original inequality constraint. Thus, the problem can be
reformulated as follows:

maximize
z = 10x1 + 6x2 + 4x3

subject to
p= x1 + x2 + x3

q = 10x1 + 4x2 + 5x3

r = 2x1 + 2x2 + 6x3

and bounds of variables

−∞ < p ≤ 100 0 ≤ x1 < +∞
−∞ < q ≤ 600 0 ≤ x2 < +∞
−∞ < r ≤ 300 0 ≤ x3 < +∞

where p, q, r are auxiliary variables (rows), and x1, x2, x3 are structural vari-
ables (columns).

The example C program shown below uses GLPK API routines in order
to solve this LP problem.1

1If you just need to solve LP or MIP instance, you may write it in MPS or CPLEX LP
format and then use the GLPK stand-alone solver to obtain a solution. This is much less
time-consuming than programming in C with GLPK API routines.
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/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *lp;

int ia[1+1000], ja[1+1000];
double ar[1+1000], z, x1, x2, x3;

s1: lp = glp_create_prob();
s2: glp_set_prob_name(lp, "sample");
s3: glp_set_obj_dir(lp, GLP_MAX);
s4: glp_add_rows(lp, 3);
s5: glp_set_row_name(lp, 1, "p");
s6: glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
s7: glp_set_row_name(lp, 2, "q");
s8: glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
s9: glp_set_row_name(lp, 3, "r");
s10: glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
s11: glp_add_cols(lp, 3);
s12: glp_set_col_name(lp, 1, "x1");
s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
s14: glp_set_obj_coef(lp, 1, 10.0);
s15: glp_set_col_name(lp, 2, "x2");
s16: glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
s17: glp_set_obj_coef(lp, 2, 6.0);
s18: glp_set_col_name(lp, 3, "x3");
s19: glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
s20: glp_set_obj_coef(lp, 3, 4.0);
s21: ia[1] = 1, ja[1] = 1, ar[1] = 1.0; /* a[1,1] = 1 */
s22: ia[2] = 1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] = 1 */
s23: ia[3] = 1, ja[3] = 3, ar[3] = 1.0; /* a[1,3] = 1 */
s24: ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
s25: ia[5] = 3, ja[5] = 1, ar[5] = 2.0; /* a[3,1] = 2 */
s26: ia[6] = 2, ja[6] = 2, ar[6] = 4.0; /* a[2,2] = 4 */
s27: ia[7] = 3, ja[7] = 2, ar[7] = 2.0; /* a[3,2] = 2 */
s28: ia[8] = 2, ja[8] = 3, ar[8] = 5.0; /* a[2,3] = 5 */
s29: ia[9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 */
s30: glp_load_matrix(lp, 9, ia, ja, ar);
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s31: glp_simplex(lp, NULL);
s32: z = glp_get_obj_val(lp);
s33: x1 = glp_get_col_prim(lp, 1);
s34: x2 = glp_get_col_prim(lp, 2);
s35: x3 = glp_get_col_prim(lp, 3);
s36: printf("\nz = %g; x1 = %g; x2 = %g; x3 = %g\n",

z, x1, x2, x3);
s37: glp_delete_prob(lp);

return 0;
}

/* eof */

The statement s1 creates a problem object. Being created the object is
initially empty. The statement s2 assigns a symbolic name to the problem
object.

The statement s3 calls the routine glp_set_obj_dir in order to set the
optimization direction flag, where GLP_MAX means maximization.

The statement s4 adds three rows to the problem object.
The statement s5 assigns the symbolic name ‘p’ to the first row, and

the statement s6 sets the type and bounds of the first row, where GLP_UP
means that the row has an upper bound. The statements s7, s8, s9, s10
are used in the same way in order to assign the symbolic names ‘q’ and ‘r’
to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.
The statement s12 assigns the symbolic name ‘x1’ to the first column,

the statement s13 sets the type and bounds of the first column, where
GLP_LO means that the column has an lower bound, and the statement s14
sets the objective coefficient for the first column. The statements s15—s20
are used in the same way in order to assign the symbolic names ‘x2’ and ‘x3’
to the second and third columns and set their types, bounds, and objective
coefficients.

The statements s21—s29 prepare non-zero elements of the constraint
matrix (i.e. constraint coefficients). Row indices of each element are stored
in the array ia, column indices are stored in the array ja, and numerical
values of corresponding elements are stored in the array ar. Then the state-
ment s30 calls the routine glp_load_matrix, which loads information from
these three arrays into the problem object.

Now all data have been entered into the problem object, and therefore
the statement s31 calls the routine glp_simplex, which is a driver to the
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simplex method, in order to solve the LP problem. This routine finds an
optimal solution and stores all relevant information back into the problem
object.

The statement s32 obtains a computed value of the objective function,
and the statements s33—s35 obtain computed values of structural variables
(columns), which correspond to the optimal basic solution found by the
solver.

The statement s36 writes the optimal solution to the standard output.
The printout may look like follows:

* 0: objval = 0.000000000e+00 infeas = 0.000000000e+00 (0)

* 2: objval = 7.333333333e+02 infeas = 0.000000000e+00 (0)

OPTIMAL SOLUTION FOUND

z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine glp_delete_prob, which
frees all the memory allocated to the problem object.

1.3.2 Compiling

The GLPK package has the only header file glpk.h, which should be avail-
able on compiling a C (or C++) program using GLPK API routines.

If the header file is installed in the default location /usr/local/include,
the following typical command may be used to compile, say, the example C
program described above with the GNU C compiler:

$ gcc -c sample.c

If glpk.h is not in the default location, the corresponding directory
containing it should be made known to the C compiler through -I option,
for example:

$ gcc -I/foo/bar/glpk-4.15/include -c sample.c

In any case the compilation results in an object file sample.o.

1.3.3 Linking

The GLPK library is a single file libglpk.a. (On systems which sup-
port shared libraries there may be also a shared version of the library
libglpk.so.)
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If the library is installed in the default location /usr/local/lib, the
following typical command may be used to link, say, the example C program
described above against with the library:

$ gcc sample.o -lglpk -lm

If the GLPK library is not in the default location, the corresponding
directory containing it should be made known to the linker through -L
option, for example:

$ gcc -L/foo/bar/glpk-4.15 sample.o -lglpk -lm

Depending on configuration of the package linking against with the
GLPK library may require the following optional libraries:

-lgmp the GNU MP bignum library;
-lz the zlib data compression library;
-lltdl the GNU ltdl shared support library.

in which case corresponding libraries should be also made known to the
linker, for example:

$ gcc sample.o -lglpk -lz -lltdl -lm

For more details about configuration options of the GLPK package see
Appendix A, page 127.
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Chapter 2

Basic API Routines

This chapter describes GLPK API routines intended for using in application
programs.

Library header

All GLPK API data types and routines are defined in the header file glpk.h.
It should be included in all source files which use GLPK API, either directly
or indirectly through some other header file as follows:

#include <glpk.h>

Error handling

If some GLPK API routine detects erroneous or incorrect data passed by
the application program, it writes appropriate diagnostic messages to the
terminal and then abnormally terminates the application program. In most
practical cases this allows to simplify programming by avoiding numerous
checks of return codes. Thus, in order to prevent crashing the application
program should check all data, which are suspected to be incorrect, before
calling GLPK API routines.

Should note that this kind of error handling is used only in cases of
incorrect data passed by the application program. If, for example, the ap-
plication program calls some GLPK API routine to read data from an input
file and these data are incorrect, the GLPK API routine reports about error
in the usual way by means of the return code.
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Thread safety

Currently GLPK API routines are non-reentrant and therefore cannot be
used in multi-threaded programs.

Array indexing

Normally all GLPK API routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, that if some
vector x of the length n is passed as an array to some GLPK API routine,
the latter expects vector components to be placed in locations x[1], x[2],
. . . , x[n], and the location x[0] normally is not used.

In order to avoid indexing errors it is most convenient and most reliable
to declare the array x as follows:

double x[1+n];

or to allocate it as follows:

double *x;
. . .
x = calloc(1+n, sizeof(double));

In both cases one extra location x[0] is reserved that allows passing the
array to GLPK routines in a usual way.

2.1 Problem object

All GLPK API routines deal with so called problem object, which is a pro-
gram object of type glp_prob and intended to represent a particular LP or
MIP instance.

The type glp_prob is a data structure declared in the header file glpk.h
as follows:

typedef struct { ... } glp_prob;

Problem objects (i.e. program objects of the glp_prob type) are allo-
cated and managed internally by the GLPK API routines. The application
program should never use any members of the glp_prob structure directly
and should deal only with pointers to these objects (that is, glp_prob *
values).
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The problem object consists of five segments, which are:
• problem segment,
• basis segment,
• interior point segment,
• MIP segment, and
• control parameters and statistics segment.

Problem segment

The problem segment contains original LP/MIP data, which corresponds to
the problem formulation (1.1)—(1.3) (see Section 1.1, page 9). It includes
the following components:
• rows (auxiliary variables),
• columns (structural variables),
• objective function, and
• constraint matrix.
Rows and columns have the same set of the following attributes:
• ordinal number,
• symbolic name (1 up to 255 arbitrary graphic characters),
• type (free, lower bound, upper bound, double bound, fixed),
• numerical values of lower and upper bounds,
• scale factor.
Ordinal numbers are intended for referencing rows and columns. Row

ordinal numbers are integers 1, 2, . . . ,m, and column ordinal numbers are
integers 1, 2, . . . , n, where m and n are, respectively, the current number of
rows and columns in the problem object.

Symbolic names are intended for informational purposes. They also can
be used for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural
variables) are explained above (see Section 1.1, page 9).

Scale factors are used internally for scaling rows and columns of the
constraint matrix.

Information about the objective function includes numerical values of
objective coefficients and a flag, which defines the optimization direction
(i.e. minimization or maximization).

The constraint matrix is a m×n rectangular matrix built of constraint co-
efficients aij , which defines the system of linear constraints (1.2) (see Section
1.1, page 9). This matrix is stored in the problem object in both row-wise
and column-wise sparse formats.
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Once the problem object has been created, the application program can
access and modify any components of the problem segment in arbitrary
order.

Basis segment

The basis segment of the problem object keeps information related to the
current basic solution. It includes:
• row and column statuses,
• basic solution statuses,
• factorization of the current basis matrix, and
• basic solution components.
The row and column statuses define which rows and columns are basic

and which are non-basic. These statuses may be assigned either by the
application program of by some API routines. Note that these statuses are
always defined independently on whether the corresponding basis is valid or
not.

The basic solution statuses include the primal status and the dual sta-
tus, which are set by the simplex-based solver once the problem has been
solved. The primal status shows whether a primal basic solution is feasible,
infeasible, or undefined. The dual status shows the same for a dual basic
solution.

The factorization of the basis matrix is some factorized form (like LU-
factorization) of the current basis matrix (defined by the current row and
column statuses). The factorization is used by the simplex-based solver
and kept when the solver terminates the search. This feature allows ef-
ficiently reoptimizing the problem after some modifications (for example,
after changing some bounds or objective coefficients). It also allows per-
forming the post-optimal analysis (for example, computing components of
the simplex table, etc.).

The basic solution components include primal and dual values of all aux-
iliary and structural variables for the most recently obtained basic solution.

Interior point segment

The interior point segment is automatically allocated after the problem has
been solved using the interior point solver. It contains interior point solution
components, which include the solution status, and primal and dual values
of all auxiliary and structural variables.
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MIP segment

The MIP segment is used only for MIP problems. This segment includes:
• column kinds,
• MIP solution status, and
• MIP solution components.
The column kinds define which columns (i.e. structural variables) are

integer and which are continuous.
The MIP solution status is set by the MIP solver and shows whether a

MIP solution is integer optimal, integer feasible (non-optimal), or undefined.
The MIP solution components are computed by the MIP solver and in-

clude primal values of all auxiliary and structural variables for the most
recently obtained MIP solution.

Note that in case of MIP problem the basis segment corresponds to the
optimal solution of LP relaxation, which is also available to the application
program.

Currently the search tree is not kept in the MIP segment. Therefore if
the search has been terminated, it cannot be continued.

Control parameters and statistics segment

This segment contains a fixed set of parameters, where each parameter has
the following three attributes:
• code,
• type, and
• current value.
The parameter code is intended for referencing a particular parameter.

All the parameter codes have symbolic names defined in the header file
‘glpk.h’.

The parameter type can be integer or real (floating-point).
The parameter value is its current value kept in the problem object.

Initially all parameters are assigned some default values.
Parameters are intended for several purposes. Some of them, which are

called control parameters, affect the behavior of API routines (for example,
the parameter LPX_K_ITLIM limits the maximal number of simplex itera-
tions allowed to the solver). Others, which are called statistics, represent
some additional information about the problem object (for example, the pa-
rameter LPX_K_ITCNT shows how many simplex iterations were performed
by the solver).
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2.2 Problem creating and modifying routines

2.2.1 Create problem object

Synopsis

glp_prob *glp_create_prob(void);

Description

The routine glp_create_prob creates a new problem object, which initially
is “empty”, i.e. has no rows and columns.

Returns

The routine returns a pointer to the created object, which should be used
in any subsequent operations on this object.

2.2.2 Assign (change) problem name

Synopsis

void glp_set_prob_name(glp_prob *lp, const char *name);

Description

The routine glp_set_prob_name assigns a given symbolic name (1 up to 255
characters) to the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the problem object.

2.2.3 Assign (change) objective function name

Synopsis

void glp_set_obj_name(glp_prob *lp, const char *name);

Description

The routine glp_set_obj_name assigns a given symbolic name (1 up to 255
characters) to the objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the objective function.

21



2.2.4 Set (change) optimization direction flag

Synopsis

void glp_set_obj_dir(glp_prob *lp, int dir);

Description

The routine glp_set_obj_dir sets (changes) the optimization direction flag
(i.e. “sense” of the objective function) as specified by the parameter dir:

GLP_MIN minimization;
GLP_MAX maximization.

(Note that by default the problem is minimization.)

2.2.5 Add new rows to problem object

Synopsis

int glp_add_rows(glp_prob *lp, int nrs);

Description

The routine glp_add_rows adds nrs rows (constraints) to the specified prob-
lem object. New rows are always added to the end of the row list, so the
ordinal numbers of existing rows are not changed.

Being added each new row is initially free (unbounded) and has empty
list of the constraint coefficients.

Returns

The routine glp_add_rows returns the ordinal number of the first new row
added to the problem object.

2.2.6 Add new columns to problem object

Synopsis

int glp_add_cols(glp_prob *lp, int ncs);

Description

The routine glp_add_cols adds ncs columns (structural variables) to the
specified problem object. New columns are always added to the end of the
column list, so the ordinal numbers of existing columns are not changed.
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Being added each new column is initially fixed at zero and has empty
list of the constraint coefficients.

Returns

The routine glp_add_cols returns the ordinal number of the first new col-
umn added to the problem object.

2.2.7 Assign (change) row name

Synopsis

void glp_set_row_name(glp_prob *lp, int i, const char *name);

Description

The routine glp_set_row_name assigns a given symbolic name (1 up to 255
characters) to i-th row (auxiliary variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing name of i-th row.

2.2.8 Assign (change) column name

Synopsis

void glp_set_col_name(glp_prob *lp, int j, const char *name);

Description

The routine glp_set_col_name assigns a given symbolic name (1 up to 255
characters) to j-th column (structural variable) of the specified problem
object.

If the parameter name is NULL or empty string, the routine erases an
existing name of j-th column.
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2.2.9 Set (change) row bounds

Synopsis

void glp_set_row_bnds(glp_prob *lp, int i, int type,
double lb, double ub);

Description

The routine glp_set_row_bnds sets (changes) the type and bounds of i-th
row (auxiliary variable) of the specified problem object.

The parameters type, lb, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR −∞ < x < +∞ Free (unbounded) variable
GLP_LO lb ≤ x < +∞ Variable with lower bound
GLP_UP −∞ < x ≤ ub Variable with upper bound
GLP_DB lb ≤ x ≤ ub Double-bounded variable
GLP_FX lb = x = ub Fixed variable

where x is the auxiliary variable associated with i-th row.
If the row has no lower bound, the parameter lb is ignored. If the row

has no upper bound, the parameter ub is ignored. If the row is an equality
constraint (i.e. the corresponding auxiliary variable is of fixed type), only
the parameter lb is used while the parameter ub is ignored.

Being added to the problem object each row is initially free, i.e. its type
is GLP_FR.

2.2.10 Set (change) column bounds

Synopsis

void glp_set_col_bnds(glp_prob *lp, int j, int type,
double lb, double ub);

Description

The routine glp_set_col_bnds sets (changes) the type and bounds of j-th
column (structural variable) of the specified problem object.

The parameters type, lb, and ub specify the type, lower bound, and
upper bound, respectively, as follows:
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Type Bounds Comment
GLP_FR −∞ < x < +∞ Free (unbounded) variable
GLP_LO lb ≤ x < +∞ Variable with lower bound
GLP_UP −∞ < x ≤ ub Variable with upper bound
GLP_DB lb ≤ x ≤ ub Double-bounded variable
GLP_FX lb = x = ub Fixed variable

where x is the structural variable associated with j-th column.
If the column has no lower bound, the parameter lb is ignored. If the

column has no upper bound, the parameter ub is ignored. If the column
is of fixed type, only the parameter lb is used while the parameter ub is
ignored.

Being added to the problem object each column is initially fixed at zero,
i.e. its type is GLP_FX and both bounds are 0.

2.2.11 Set (change) objective coefficient or constant term

Synopsis

void glp_set_obj_coef(glp_prob *lp, int j, double coef);

Description

The routine glp_set_obj_coef sets (changes) the objective coefficient at
j-th column (structural variable). A new value of the objective coefficient
is specified by the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term
(“shift”) of the objective function.

2.2.12 Set (replace) row of the constraint matrix

Synopsis

void glp_set_mat_row(glp_prob *lp, int i, int len,
const int ind[], const double val[]);

Description

The routine glp_set_mat_row stores (replaces) the contents of i-th row of
the constraint matrix of the specified problem object.

Column indices and numerical values of new row elements must be placed
in locations ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively,
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where 0 ≤ len ≤ n is the new length of i-th row, n is the current number
of columns in the problem object. Elements with identical column indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

2.2.13 Set (replace) column of the constraint matrix

Synopsis

void glp_set_mat_col(glp_prob *lp, int j, int len,
const int ind[], const double val[]);

Description

The routine glp_set_mat_col stores (replaces) the contents of j-th column
of the constraint matrix of the specified problem object.

Row indices and numerical values of new column elements must be placed
in locations ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively,
where 0 ≤ len ≤ m is the new length of j-th column, m is the current
number of rows in the problem object. Elements with identical row indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

2.2.14 Load (replace) the whole constraint matrix

Synopsis

void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
const int ja[], const double ar[]);

Description

The routine glp_load_matrix loads the constraint matrix passed in the
arrays ia, ja, and ar into the specified problem object. Before loading the
current contents of the constraint matrix is destroyed.

Constraint coefficients (elements of the constraint matrix) must be spec-
ified as triplets (ia[k], ja[k], ar[k]) for k = 1, . . . , ne, where ia[k] is
the row index, ja[k] is the column index, and ar[k] is a numeric value of
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corresponding constraint coefficient. The parameter ne specifies the total
number of (non-zero) elements in the matrix to be loaded. Coefficients with
identical indices are not allowed. Zero coefficients are allowed, however, they
are not stored in the constraint matrix.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be spec-
ified as NULL.

2.2.15 Delete rows from problem object

Synopsis

void glp_del_rows(glp_prob *lp, int nrs, const int num[]);

Description

The routine glp_del_rows deletes rows from the specified problem ob-
ject. Ordinal numbers of rows to be deleted should be placed in locations
num[1], . . . , num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows
remaining in the problem object. New ordinal numbers of the remaining
rows are assigned under the assumption that the original order of rows is
not changed. Let, for example, before deletion there be five rows a, b, c, d,
e with ordinal numbers 1, 2, 3, 4, 5, and let rows b and d have been deleted.
Then after deletion the remaining rows a, c, e are assigned new oridinal
numbers 1, 2, 3.

2.2.16 Delete columns from problem object

Synopsis

void glp_del_cols(glp_prob *lp, int ncs, const int num[]);

Description

The routine glp_del_cols deletes columns from the specified problem ob-
ject. Ordinal numbers of columns to be deleted should be placed in locations
num[1], . . . , num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other
columns remaining in the problem object. New ordinal numbers of the
remaining columns are assigned under the assumption that the original order
of columns is not changed. Let, for example, before deletion there be six
columns p, q, r, s, t, u with ordinal numbers 1, 2, 3, 4, 5, 6, and let columns

27



p, q, s have been deleted. Then after deletion the remaining columns r, t, u
are assigned new ordinal numbers 1, 2, 3.

2.2.17 Erase problem object content

Synopsis

void glp_erase_prob(glp_prob *lp);

Description

The routine glp_erase_prob erases the content of the specified problem
object. The effect of this operation is the same as if the problem object
would be deleted with the routine glp_delete_prob and then created anew
with the routine glp_create_prob, with the only exception that the handle
(pointer) to the problem object remains valid.

2.2.18 Delete problem object

Synopsis

void glp_delete_prob(glp_prob *lp);

Description

The routine glp_delete_prob deletes a problem object, which the param-
eter lp points to, freeing all the memory allocated to this object.
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2.3 Problem retrieving routines

2.3.1 Retrieve problem name

Synopsis

const char *glp_get_prob_name(glp_prob *lp);

Returns

The routine glp_get_prob_name returns a pointer to an internal buffer,
which contains symbolic name of the problem. However, if the problem has
no assigned name, the routine returns NULL.

2.3.2 Retrieve objective function name

Synopsis

const char *glp_get_obj_name(glp_prob *lp);

Returns

The routine glp_get_obj_name returns a pointer to an internal buffer, which
contains symbolic name assigned to the objective function. However, if the
objective function has no assigned name, the routine returns NULL.

2.3.3 Retrieve optimization direction flag

Synopsis

int glp_get_obj_dir(glp_prob *lp);

Returns

The routine glp_get_obj_dir returns the optimization direction flag (i.e.
“sense” of the objective function):

GLP_MIN minimization;
GLP_MAX maximization.
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2.3.4 Retrieve number of rows

Synopsis

int glp_get_num_rows(glp_prob *lp);

Returns

The routine glp_get_num_rows returns the current number of rows in the
specified problem object.

2.3.5 Retrieve number of columns

Synopsis

int glp_get_num_cols(glp_prob *lp);

Returns

The routine glp_get_num_cols returns the current number of columns the
specified problem object.

2.3.6 Retrieve row name

Synopsis

const char *glp_get_row_name(glp_prob *lp, int i);

Returns

The routine glp_get_row_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to i-th row. However, if the row has no
assigned name, the routine returns NULL.

2.3.7 Retrieve column name

Synopsis

const char *glp_get_col_name(glp_prob *lp, int j);

Returns

The routine glp_get_col_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to j-th column. However, if the column
has no assigned name, the routine returns NULL.
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2.3.8 Retrieve row type

Synopsis

int glp_get_row_type(glp_prob *lp, int i);

Returns

The routine glp_get_row_type returns the type of i-th row, i.e. the type
of corresponding auxiliary variable, as follows:

GLP_FR free (unbounded) variable;
GLP_LO variable with lower bound;
GLP_UP variable with upper bound;
GLP_DB double-bounded variable;
GLP_FX fixed variable.

2.3.9 Retrieve row lower bound

Synopsis

double glp_get_row_lb(glp_prob *lp, int i);

Returns

The routine glp_get_row_lb returns the lower bound of i-th row, i.e. the
lower bound of corresponding auxiliary variable. However, if the row has no
lower bound, the routine returns -DBL_MAX.

2.3.10 Retrieve row upper bound

Synopsis

double glp_get_row_ub(glp_prob *lp, int i);

Returns

The routine glp_get_row_ub returns the upper bound of i-th row, i.e. the
upper bound of corresponding auxiliary variable. However, if the row has
no upper bound, the routine returns +DBL_MAX.
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2.3.11 Retrieve column type

Synopsis

int glp_get_col_type(glp_prob *lp, int j);

Returns

The routine glp_get_col_type returns the type of j-th column, i.e. the
type of corresponding structural variable, as follows:

GLP_FR free (unbounded) variable;
GLP_LO variable with lower bound;
GLP_UP variable with upper bound;
GLP_DB double-bounded variable;
GLP_FX fixed variable.

2.3.12 Retrieve column lower bound

Synopsis

double glp_get_col_lb(glp_prob *lp, int j);

Returns

The routine glp_get_col_lb returns the lower bound of j-th column, i.e.
the lower bound of corresponding structural variable. However, if the column
has no lower bound, the routine returns -DBL_MAX.

2.3.13 Retrieve column upper bound

Synopsis

double glp_get_col_ub(glp_prob *lp, int j);

Returns

The routine glp_get_col_ub returns the upper bound of j-th column, i.e.
the upper bound of corresponding structural variable. However, if the col-
umn has no upper bound, the routine returns +DBL_MAX.
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2.3.14 Retrieve objective coefficient or constant term

Synopsis

double glp_get_obj_coef(glp_prob *lp, int j);

Returns

The routine glp_get_obj_coef returns the objective coefficient at j-th
structural variable (column).

If the parameter j is 0, the routine returns the constant term (“shift”)
of the objective function.

2.3.15 Retrieve number of constraint coefficients

Synopsis

int glp_get_num_nz(glp_prob *lp);

Returns

The routine glp_get_num_nz returns the number of non-zero elements in
the constraint matrix of the specified problem object.

2.3.16 Retrieve row of the constraint matrix

Synopsis

int glp_get_mat_row(glp_prob *lp, int i, int ind[],
double val[]);

Description

The routine glp_get_mat_row scans (non-zero) elements of i-th row of the
constraint matrix of the specified problem object and stores their column
indices and numeric values to locations ind[1], . . . , ind[len] and val[1],
. . . , val[len], respectively, where 0 ≤ len ≤ n is the number of elements
in i-th row, n is the number of columns.

The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.
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Returns

The routine glp_get_mat_row returns the length len, i.e. the number of
(non-zero) elements in i-th row.

2.3.17 Retrieve column of the constraint matrix

Synopsis

int glp_get_mat_col(glp_prob *lp, int j, int ind[],
double val[]);

Description

The routine glp_get_mat_col scans (non-zero) elements of j-th column of
the constraint matrix of the specified problem object and stores their row
indices and numeric values to locations ind[1], . . . , ind[len] and val[1],
. . . , val[len], respectively, where 0 ≤ len ≤ m is the number of elements
in j-th column, m is the number of rows.

The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.

Returns

The routine glp_get_mat_col returns the length len, i.e. the number of
(non-zero) elements in j-th column.
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2.4 Row and column searching routines

2.4.1 Create the name index

Synopsis

void glp_create_index(glp_prob *lp);

Description

The routine glp_create_index creates the name index for the specified
problem object. The name index is an auxiliary data structure, which is
intended to quickly (i.e. for logarithmic time) find rows and columns by
their names.

This routine can be called at any time. If the name index already exists,
the routine does nothing.

2.4.2 Find row by its name

Synopsis

int glp_find_row(glp_prob *lp, const char *name);

Returns

The routine glp_find_row returns the ordinal number of a row, which is
assigned (by the routine glp_set_row_name) the specified symbolic name.
If no such row exists, the routine returns 0.

2.4.3 Find column by its name

Synopsis

int glp_find_col(glp_prob *lp, const char *name);

Returns

The routine glp_find_col returns the ordinal number of a column, which
is assigned (by the routine glp_set_col_name) the specified symbolic name.
If no such column exists, the routine returns 0.
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2.4.4 Delete the name index

Synopsis

void glp_delete_index(glp_prob *lp);

Description

The routine glp_delete_index deletes the name index previously created
by the routine glp_create_index and frees the memory allocated to this
auxiliary data structure.

This routine can be called at any time. If the name index does not exist,
the routine does nothing.
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2.5 Problem scaling routines

2.5.1 Background

In GLPK the scaling means a linear transformation applied to the constraint
matrix to improve its numerical properties.1

The main equality is the following:

Ã = RAS, (2.1)

where A = (aij) is the original constraint matrix, R = (rii) > 0 is a diagonal
matrix used to scale rows (constraints), S = (sjj) > 0 is a diagonal matrix
used to scale columns (variables), Ã is the scaled constraint matrix.

From (2.1) it follows that in the scaled problem instance each original
constraint coefficient aij is replaced by corresponding scaled constraint co-
efficient:

ãij = riiaijsjj . (2.2)

Note that the scaling is performed internally and therefore transparently
to the user. This means that on API level the user always deal with unscaled
data.

Scale factors rii and sjj can be set or changed at any time either directly
by the application program in a problem specific way (with the routines
glp_set_rii and glp_set_sjj), or by some API routines intended for au-
tomatic scaling.

2.5.2 Set (change) row scale factor

Synopsis

void glp_set_rii(glp_prob *lp, int i, double rii);

Description

The routine glp_set_rii sets (changes) the scale factor rii for i-th row of
the specified problem object.

1In many cases a proper scaling allows making the constraint matrix to be better
conditioned, i.e. decreasing its condition number, that makes computations numerically
more stable.
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2.5.3 Set (change) column scale factor

Synopsis

void glp_set_sjj(glp_prob *lp, int j, double sjj);

Description

The routine glp_set_sjj sets (changes) the scale factor sjj for j-th column
of the specified problem object.

2.5.4 Retrieve row scale factor

Synopsis

double glp_get_rii(glp_prob *lp, int i);

Returns

The routine glp_get_rii returns current scale factor rii for i-th row of the
specified problem object.

2.5.5 Retrieve column scale factor

Synopsis

double glp_get_sjj(glp_prob *lp, int j);

Returns

The routine glp_get_sjj returns current scale factor sjj for j-th column of
the specified problem object.

2.5.6 Scale problem data

Synopsis

void lpx_scale_prob(glp_prob *lp);

Description

The routine lpx_scale_prob performs automatic scaling of problem data
for the specified problem object.
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The purpose of scaling is to provide such scaling matrices R and S, on
which the scaled constraint matrix Ã = RAS has better numerical properties
than the original constraint matrix A.

2.5.7 Unscale problem data

Synopsis

void glp_unscale_prob(glp_prob *lp);

The routine glp_unscale_prob performs unscaling of problem data for
the specified problem object.

“Unscaling” means replacing the current scaling matrices R and S by
unity matrices that cancels the scaling effect.
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2.6 LP basis constructing routines

2.6.1 Construct standard initial LP basis

Synopsis

void lpx_std_basis(glp_prob *lp);

Description

The routine lpx_std_basis constructs the “standard” (trivial) initial LP
basis for the specified problem object.

In the “standard” LP basis all auxiliary variables (rows) are basic, and
all structural variables (columns) are non-basic (so the corresponding basis
matrix is unity).

2.6.2 Construct advanced initial LP basis

Synopsis

void lpx_adv_basis(glp_prob *lp);
void lpx_cpx_basis(glp_prob *lp);

Description

The routine lpx_adv_basis builds an advanced initial LP basis for the
specified problem object.

In order to construct the advanced initial LP basis the routine does the
following:

1) includes in the basis all non-fixed auxiliary variables;
2) includes in the basis as many non-fixed structural variables as possible

keeping the triangular form of the basis matrix;
3) includes in the basis appropriate (fixed) auxiliary variables to complete

the basis.
As a result the initial LP basis has as few fixed variables as possible and

the corresponding basis matrix is triangular.
The routine lpx_cpx_basis performs the same task. It implements the

algorithm proposed by R. Bixby.2

2R. Bixby, “Implementing the Simplex Method: The Initial Basis” (1992), ORSA J.,
4, pp. 267–84.
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2.6.3 Set (change) row status

Synopsis

void glp_set_row_stat(glp_prob *lp, int i, int stat);

Description

The routine glp_set_row_stat sets (changes) the current status of i-th row
(auxiliary variable) as specified by the parameter stat:

GLP_BS make the row basic (make the constraint inactive);
GLP_NL make the row non-basic (make the constraint active);
GLP_NU make the row non-basic and set it to the upper bound; if the

row is not double-bounded, this status is equivalent to GLP_NL
(only in the case of this routine);

GLP_NF the same as GLP_NL (only in the case of this routine);
GLP_NS the same as GLP_NL (only in the case of this routine).

2.6.4 Set (change) column status

Synopsis

void glp_set_col_stat(glp_prob *lp, int j, int stat);

Description

The routine glp_set_col_stat sets (changes) the current status of j-th
column (structural variable) as specified by the parameter stat:

GLP_BS make the column basic;
GLP_NL make the column non-basic;
GLP_NU make the column non-basic and set it to the upper bound; if

the column is not double-bounded, this status is equivalent to
GLP_NL (only in the case of this routine);

GLP_NF the same as GLP_NL (only in the case of this routine);
GLP_NS the same as GLP_NL (only in the case of this routine).
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2.7 Simplex method routines

The simplex method is a well known efficient numerical procedure to solve
LP problems.

On each iteration the simplex method transforms the original system of
equaility constraints (1.2) resolving them through different sets of variables
to an equivalent system called the simplex table (or sometimes the simplex
tableau), which has the following form:

z = d1(xN )1 + d2(xN )2 + . . .+ dn(xN )n

(xB)1 = ξ11(xN )1 + ξ12(xN )2 + . . .+ ξ1n(xN )n

(xB)2 = ξ21(xN )1 + ξ22(xN )2 + . . .+ ξ2n(xN )n

. . . . . . . . . . . . . .
(xB)m = ξm1(xN )1 + ξm2(xN )2 + . . .+ ξmn(xN )n

(2.1)

where: (xB)1, (xB)2, . . . , (xB)m are basic variables; (xN )1, (xN )2, . . . , (xN )n

are non-basic variables; d1, d2, . . . , dn are reduced costs; ξ11, ξ12, . . . , ξmn are
coefficients of the simplex table. (May note that the original LP problem
(1.1)—(1.3) also has the form of a simplex table, where all equalities are
resolved through auxiliary variables.)

From the linear programming theory it is known that if an optimal so-
lution of the LP problem (1.1)—(1.3) exists, it can always be written in the
form (2.1), where non-basic variables are set on their bounds while values
of the objective function and basic variables are determined by the corre-
sponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the
simplex table is called basic solution. If all basic variables are within their
bounds, the basic solution is called (primal) feasible, otherwise it is called
(primal) infeasible. A feasible basic solution, which provides a smallest (in
case of minimization) or a largest (in case of maximization) value of the
objective function is called optimal. Therefore, for solving LP problem the
simplex method tries to find its optimal basic solution.

Primal feasibility of some basic solution may be stated by simple checking
if all basic variables are within their bounds. Basic solution is optimal if
additionally the following optimality conditions are satisfied for all non-basic
variables:

Status of (xN )j Minimization Maximization
(xN )j is free dj = 0 dj = 0
(xN )j is on its lower bound dj ≥ 0 dj ≤ 0
(xN )j is on its upper bound dj ≤ 0 dj ≥ 0
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In other words, basic solution is optimal if there is no non-basic variable,
which changing in the feasible direction (i.e. increasing if it is free or on its
lower bound, or decreasing if it is free or on its upper bound) can improve
(i.e. decrease in case of minimization or increase in case of maximization)
the objective function.

If all non-basic variables satisfy to the optimality conditions shown above
(independently on whether basic variables are within their bounds or not),
the basic solution is called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution
due to incorrect formulation — this means that its constraints conflict with
each other. It also may happen that some LP problem has unbounded solu-
tion again due to incorrect formulation — this means that some non-basic
variable can improve the objective function, i.e. the optimality conditions
are violated, and at the same time this variable can infinitely change in the
feasible direction meeting no resistance from basic variables. (May note that
in the latter case the LP problem has no dual feasible solution.)

2.7.1 Solve LP problem with the simplex method

Synopsis

int glp_simplex(glp_prob *lp, const glp_smcp *parm);

Description

The routine glp_simplex is a driver to the LP solver based on the simplex
method. This routine retrieves problem data from the specified problem
object, calls the solver to solve the problem instance, and stores results of
computations back into the problem object.

The simplex solver has a set of control parameters. Values of the control
parameters can be passed in a structure glp_smcp, which the parameter
parm points to. For a detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_smcp by default
values of all control parameters using the routine glp_init_smcp (see the
next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_smcp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.
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Returns

0 The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EBADB Unable to start the search, because the initial basis speci-
fied in the problem object is invalid—the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

GLP_ESING Unable to start the search, because the basis matrix corre-
sponding to the initial basis is singular within the working
precision.

GLP_ECOND Unable to start the search, because the basis matrix cor-
responding to the initial basis is ill-conditioned, i.e. its
condition number is too large.

GLP_EBOUND Unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds.

GLP_EFAIL The search was prematurely terminated due to the solver
failure.

GLP_EOBJLL The search was prematurely terminated, because the ob-
jective function being maximized has reached its lower
limit and continues decreasing (the dual simplex only).

GLP_EOBJUL The search was prematurely terminated, because the ob-
jective function being minimized has reached its upper
limit and continues increasing (the dual simplex only).

GLP_EITLIM The search was prematurely terminated, because the sim-
plex iteration limit has been exceeded.

GLP_ETMLIM The search was prematurely terminated, because the time
limit has been exceeded.

GLP_ENOPFS The LP problem instance has no primal feasible solution
(only if the LP presolver is used).

GLP_ENODFS The LP problem instance has no dual feasible solution
(only if the LP presolver is used).

Using built-in LP presolver

The simplex solver has built-in LP presolver, which is a subprogram that
transforms the original LP problem specified in the problem object to an
equivalent LP problem, which may be easier for solving with the simplex
method than the original one. This is attained mainly due to reducing the
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problem size and improving its numeric properties (for example, by removing
some inactive constraints or by fixing some non-basic variables). Once the
transformed LP problem has been solved, the presolver transforms its basic
solution back to the corresponding basic solution of the original problem.

Presolving is an optional feature of the routine glp_simplex, and by de-
fault it is disabled. In order to enable the LP presolver the control parameter
presolve should be set to GLP_ON (see paragraph “Control parameters” be-
low). Presolving may be used when the problem instance is solved for the
first time. However, on performing re-optimization the presolver should be
disabled.

The presolving procedure is transparent to the API user in the sense
that all necessary processing is performed internally, and a basic solution
of the original problem recovered by the presolver is the same as if it were
computed directly, i.e. without presolving.

Note that the presolver is able to recover only optimal solutions. If a
computed solution is infeasible or non-optimal, the corresponding solution of
the original problem cannot be recovered and therefore remains undefined.
If you need to know a basic solution even if it is infeasible or non-optimal,
the presolver should be disabled.

Solver terminal output

Solving large problem instances may take a long time, so the solver reports
some information about the current basic solution, which is sent to the
terminal. This information has the following format:

nnn: objval = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objec-
tive function (which is unscaled and has correct sign), ‘yyy’ is the current
sum of primal infeasibilities (which is scaled and therefore may be used for
visual estimating only), ‘ddd’ is the current number of fixed basic variables.

The symbol preceding the iteration number indicates which phase of the
simplex method is in effect:

Blank means the solver is searching for a primal feasible solution (primal
simplex, phase I);

Asterisk (*) means the solver is searching for the optimal solution (primal
simplex, phase II);

Vertical dash (|) means the solver is searching for the optimal solution
using the dual simplex.
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Control parameters

This paragraph describes all control parameters currently used in the sim-
plex solver. Symbolic names of control parameters are names of correspond-
ing members in the structure glp_smcp.

int msg lev (default: GLP MSG ALL)
Message level for terminal output:
GLP_MSG_OFF — no output;
GLP_MSG_ERR — error and warning messages only;
GLP_MSG_ON — normal output;
GLP_MSG_ALL — full output (including informational messages).

int meth (default: GLP PRIMAL)
Simplex method option:
GLP_PRIMAL — two-phase primal simplex;
GLP_DUALP — dual simplex, if possible, otherwise primal simplex.

int pricing (default: GLP PT PSE)
Pricing technique:
GLP_PT_STD — standard (textbook);
GLP_PT_PSE — projected steepest edge.

int r test (default: GLP RT HAR)
Ratio test technique:
GLP_RT_STD — standard (textbook);
GLP_RT_HAR — Harris’ two-pass ratio test.

double tol bnd (default: 1e-7)
Tolerance used to check if the basic solution is primal feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol dj (default: 1e-7)
Tolerance used to check if the basic solution is dual feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol piv (default: 1e-10)
Tolerance used to choose eligble pivotal elements of the simplex table.
(Do not change this parameter without detailed understanding its pur-
pose.)

double obj ll (default: -DBL MAX)
Lower limit of the objective function. If the objective function reaches
this limit and continues decreasing, the solver terminates the search.
(Used in the dual simplex only.)
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double obj ul (default: +DBL MAX)
Upper limit of the objective function. If the objective function reaches
this limit and continues increasing, the solver terminates the search.
(Used in the dual simplex only.)

int it lim (default: INT MAX)
Simplex iteration limit.

int tm lim (default: INT MAX)
Searching time limit, in milliseconds.

int out frq (default: 200)
Output frequency, in iterations. This parameter specifies how frequently
the solver sends information about the solution process to the terminal.

int out dly (default: 0)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about the solution process to
the terminal.

int presolve (default: GLP OFF)
LP presolver option:
GLP_ON — enable using the LP presolver;
GLP_OFF — disable using the LP presolver.

2.7.2 Initialize simplex method control parameters

Synopsis

int glp_init_smcp(glp_smcp *parm);

Description

The routine glp_init_smcp initializes control parameters, which are used
by the simplex solver, with default values.

Default values of the control parameters are stored in a glp_smcp struc-
ture, which the parameter parm points to.
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2.7.3 Solve LP problem in exact arithmetic

Synopsis

int lpx_exact(glp_prob *lp);

Description

The routine lpx_exact is an experimental implementation of the primal
two-phase simplex method based on exact (rational) arithmetic. It is similar
to the routine glp_simplex, however, for all internal computations it uses
arithmetic of rational numbers, which is exact in mathematical sense, i.e.
free of round-off errors unlike floating-point arithmetic.

Returns

The routine lpx_exact returns one of the following exit codes:
LPX_E_OK the LP problem has been successfully solved. (Note

that, for example, if the problem has no feasible solu-
tion, this exit code is reported.)

LPX_E_FAULT either the LP problem has no rows and/or columns, or
the initial basis is invalid, or the basis matrix is exactly
singular.

LPX_E_ITLIM the search was prematurely terminated because the
simplex iterations limit has been exceeded.

LPX_E_TMLIM the search was prematurely terminated because the
time limit has been exceeded.

48



2.7.4 Retrieve generic status of basic solution

Synopsis

int glp_get_status(glp_prob *lp);

Returns

The routine glp_get_status reports the generic status of the current basic
solution for the specified problem object as follows:

GLP_OPT solution is optimal;
GLP_FEAS solution is feasible;
GLP_INFEAS solution is infeasible;
GLP_NOFEAS problem has no feasible solution;
GLP_UNBND problem has unbounded solution;
GLP_UNDEF solution is undefined.
More detailed information about the status of basic solution can be re-

trieved with the routines glp_get_prim_stat and glp_get_dual_stat.

2.7.5 Retrieve status of primal basic solution

Synopsis

int glp_get_prim_stat(glp_prob *lp);

Returns

The routine glp_get_prim_stat reports the status of the primal basic so-
lution for the specified problem object as follows:

GLP_UNDEF primal solution is undefined;
GLP_FEAS primal solution is feasible;
GLP_INFEAS primal solution is infeasible;
GLP_NOFEAS no primal feasible solution exists.
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2.7.6 Retrieve status of dual basic solution

Synopsis

int glp_get_dual_stat(glp_prob *lp);

Returns

The routine glp_get_dual_stat reports the status of the dual basic solution
for the specified problem object as follows:

GLP_UNDEF dual solution is undefined;
GLP_FEAS dual solution is feasible;
GLP_INFEAS dual solution is infeasible;
GLP_NOFEAS no dual feasible solution exists.

2.7.7 Retrieve objective value

Synopsis

double glp_get_obj_val(glp_prob *lp);

Returns

The routine glp_get_obj_val returns current value of the objective func-
tion.

2.7.8 Retrieve row status

Synopsis

int glp_get_row_stat(glp_prob *lp, int i);

Returns

The routine glp_get_row_stat returns current status assigned to the aux-
iliary variable associated with i-th row as follows:

GLP_BS basic variable;
GLP_NL non-basic variable on its lower bound;
GLP_NU non-basic variable on its upper bound;
GLP_NF non-basic free (unbounded) variable;
GLP_NS non-basic fixed variable.
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2.7.9 Retrieve row primal value

Synopsis

double glp_get_row_prim(glp_prob *lp, int i);

Returns

The routine glp_get_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

2.7.10 Retrieve row dual value

Synopsis

double glp_get_row_dual(glp_prob *lp, int i);

Returns

The routine glp_get_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.7.11 Retrieve column status

Synopsis

int glp_get_col_stat(glp_prob *lp, int j);

Returns

The routine glp_get_col_stat returns current status assigned to the struc-
tural variable associated with j-th column as follows:

GLP_BS basic variable;
GLP_NL non-basic variable on its lower bound;
GLP_NU non-basic variable on its upper bound;
GLP_NF non-basic free (unbounded) variable;
GLP_NS non-basic fixed variable.
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2.7.12 Retrieve column primal value

Synopsis

double glp_get_col_prim(glp_prob *lp, int j);

Returns

The routine glp_get_col_prim returns primal value of the structural vari-
able associated with j-th column.

2.7.13 Retrieve column dual value

Synopsis

double glp_get_col_dual(glp_prob *lp, int j);

Returns

The routine glp_get_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

2.7.14 Retrieve non-basic variable causing unboundness

Synopsis

int lpx_get_ray_info(glp_prob *lp);

Returns

The routine lpx_get_ray_info returns the number k of some non-basic
variable xk, which causes primal unboundness. If such a variable cannot be
identified, the routine returns zero.

If 1 ≤ k ≤ m, xk is k-th auxiliary variable, and if m + 1 ≤ k ≤ m + n,
xk is (k−m)-th structural variable, where m is the number of rows, n is the
number of columns in the specified problem object.

“Unboundness” means that the variable xk is non-basic and able to in-
finitely change in a feasible direction improving the objective function.
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2.7.15 Check Karush-Kuhn-Tucker conditions

Synopsis

void lpx_check_kkt(glp_prob *lp, int scaled, LPXKKT *kkt);

Description

The routine lpx_check_kkt checks Karush-Kuhn-Tucker optimality condi-
tions for basic solution. It is assumed that both primal and dual components
of basic solution are valid.

If the parameter scaled is zero, the optimality conditions are checked
for the original, unscaled LP problem. Otherwise, if the parameter scaled
is non-zero, the routine checks the conditions for an internally scaled LP
problem.

The parameter kkt is a pointer to the structure LPXKKT, to which the
routine stores results of the check. Members of this structure are shown in
the table below.

Condition Member Comment
(KKT.PE) pe_ae_max Largest absolute error

pe_ae_row Number of row with largest absolute error
pe_re_max Largest relative error
pe_re_row Number of row with largest relative error
pe_quality Quality of primal solution

(KKT.PB) pb_ae_max Largest absolute error
pb_ae_ind Number of variable with largest absolute error
pb_re_max Largest relative error
pb_re_ind Number of variable with largest relative error
pb_quality Quality of primal feasibility

(KKT.DE) de_ae_max Largest absolute error
de_ae_col Number of column with largest absolute error
de_re_max Largest relative error
de_re_col Number of column with largest relative error
de_quality Quality of dual solution

(KKT.DB) db_ae_max Largest absolute error
db_ae_ind Number of variable with largest absolute error
db_re_max Largest relative error
db_re_ind Number of variable with largest relative error
db_quality Quality of dual feasibility
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The routine performs all computations using only components of the
given LP problem and the current basic solution.

Background

The first condition checked by the routine is:

xR −AxS = 0, (KKT.PE)

where xR is the subvector of auxiliary variables (rows), xS is the subvector
of structural variables (columns), A is the constraint matrix. This condition
expresses the requirement that all primal variables must satisfy to the system
of equality constraints of the original LP problem. In case of exact arithmetic
this condition would be satisfied for any basic solution; however, in case of
inexact (floating-point) arithmetic, this condition shows how accurate the
primal basic solution is, that depends on accuracy of a representation of the
basis matrix used by the simplex method routines.

The second condition checked by the routine is:

lk ≤ xk ≤ uk for all k = 1, . . . ,m+ n, (KKT.PB)

where xk is auxiliary (1 ≤ k ≤ m) or structural (m+1 ≤ k ≤ m+n) variable,
lk and uk are, respectively, lower and upper bounds of the variable xk (in-
cluding cases of infinite bounds). This condition expresses the requirement
that all primal variables must satisfy to bound constraints of the original LP
problem. Since in case of basic solution all non-basic variables are placed
on their bounds, actually the condition (KKT.PB) needs to be checked for
basic variables only. If the primal basic solution has sufficient accuracy, this
condition shows primal feasibility of the solution.

The third condition checked by the routine is:

grad Z = c = (Ã)Tπ + d,

where Z is the objective function, c is the vector of objective coefficients,
(Ã)T is a matrix transposed to the expanded constraint matrix Ã = (I|−A),
π is a vector of Lagrange multipliers that correspond to equality constraints
of the original LP problem, d is a vector of Lagrange multipliers that cor-
respond to bound constraints for all (auxiliary and structural) variables of
the original LP problem. Geometrically the third condition expresses the
requirement that the gradient of the objective function must belong to the
orthogonal complement of a linear subspace defined by the equality and ac-
tive bound constraints, i.e. that the gradient must be a linear combination
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of normals to the constraint planes, where Lagrange multipliers π and d are
coefficients of that linear combination.

To eliminate the vector π the third condition can be rewritten as:(
I
−AT

)
π =

(
dR

dS

)
+

(
cR
cS

)
,

or, equivalently:
π + dR = cR,

−ATπ + dS = cS .

Then substituting the vector π from the first equation into the second one
we have:

AT (dR − cR) + (dS − cS) = 0, (KKT.DE)

where dR is the subvector of reduced costs of auxiliary variables (rows),
dS is the subvector of reduced costs of structural variables (columns), cR
and cS are subvectors of objective coefficients at, respectively, auxiliary and
structural variables, AT is a matrix transposed to the constraint matrix of
the original LP problem. In case of exact arithmetic this condition would be
satisfied for any basic solution; however, in case of inexact (floating-point)
arithmetic, this condition shows how accurate the dual basic solution is,
that depends on accuracy of a representation of the basis matrix used by
the simplex method routines.

The last, fourth condition checked by the routine is (KKT.DB):

dk = 0, if xk is basic or free non-basic variable
0 ≤ dk < +∞ if xk is non-basic on its lower (minimization)

or upper (maximization) bound
−∞ < dk ≤ 0 if xk is non-basic on its upper (minimization)

or lower (maximization) bound
−∞ < dk < +∞ if xk is non-basic fixed variable

for all k = 1, . . . ,m + n, where dk is a reduced cost (Lagrange multiplier)
of auxiliary (1 ≤ k ≤ m) or structural (m + 1 ≤ k ≤ m + n) variable xk.
Geometrically this condition expresses the requirement that constraints of
the original problem must ”hold” the point preventing its movement along
the anti-gradient (in case of minimization) or the gradient (in case of maxi-
mization) of the objective function. Since in case of basic solution reduced
costs of all basic variables are placed on their (zero) bounds, actually the
condition (KKT.DB) needs to be checked for non-basic variables only. If
the dual basic solution has sufficient accuracy, this condition shows dual
feasibility of the solution.
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Should note that the complete set of Karush-Kuhn-Tucker optimality
conditions also includes the fifth, so called complementary slackness condi-
tion, which expresses the requirement that at least either a primal variable
xk or its dual counterpart dk must be on its bound for all k = 1, . . . ,m+ n.
However, being always satisfied by definition for any basic solution that
condition is not checked by the routine.

To check the first condition (KKT.PE) the routine computes a vector of
residuals:

g = xR −AxS ,

determines component of this vector that correspond to largest absolute and
relative errors:

pe_ae_max = max
1≤i≤m

|gi|,

pe_re_max = max
1≤i≤m

|gi|
1 + |(xR)i|

,

and stores these quantities and corresponding row indices to the structure
LPXKKT.

To check the second condition (KKT.PB) the routine computes a vector
of residuals:

hk =


0, if lk ≤ xk ≤ uk

xk − lk, if xk < lk
xk − uk, if xk > uk

for all k = 1, . . . ,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:

pb_ae_max = max
1≤k≤m+n

|hk|,

pb_re_max = max
1≤k≤m+n

|hk|
1 + |xk|

,

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.

To check the third condition (KKT.DE) the routine computes a vector
of residuals:

u = AT (dR − cR) + (dS − cS),

determines components of this vector that correspond to largest absolute
and relative errors:

de_ae_max = max
1≤j≤n

|uj |,
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de_re_max = max
1≤j≤n

|uj |
1 + |(dS)j − (cS)j |

,

and stores these quantities and corresponding column indices to the struc-
ture LPXKKT.

To check the fourth condition (KKT.DB) the routine computes a vector
of residuals:

vk =

{
0, if dk has correct sign
dk, if dk has wrong sign

for all k = 1, . . . ,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:

db_ae_max = max
1≤k≤m+n

|vk|,

db_re_max = max
1≤k≤m+n

|vk|
1 + |dk − ck|

,

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.

Using the relative errors for all the four conditions listed above the rou-
tine lpx_check_kkt also estimates a ”quality” of the basic solution from the
standpoint of these conditions and stores corresponding quality indicators
to the structure LPXKKT:

pe_quality — quality of primal solution;
pb_quality — quality of primal feasibility;
de_quality — quality of dual solution;
db_quality — quality of dual feasibility.
Each of these indicators is assigned to one of the following four values:
’H’ means high quality,
’M’ means medium quality,
’L’ means low quality, or
’?’ means wrong or infeasible solution.
If all the indicators show high or medium quality (for an internally

scaled LP problem, i.e. when the parameter scaled in a call to the routine
lpx_check_kkt is non-zero), the user can be sure that the obtained basic
solution is quite accurate.

If some of the indicators show low quality, the solution can still be con-
sidered as relevant, though an additional analysis is needed depending on
which indicator shows low quality.
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If the indicator pe_quality is assigned to ’?’, the primal solution is
wrong. If the indicator de_quality is assigned to ’?’, the dual solution is
wrong.

If the indicator db_quality is assigned to ’?’ while other indicators
show a good quality, this means that the current basic solution being primal
feasible is not dual feasible. Similarly, if the indicator pb_quality is assigned
to ’?’ while other indicators are not, this means that the current basic
solution being dual feasible is not primal feasible.
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2.8 Interior-point method routines

2.8.1 Solve LP problem with the interior-point method

Synopsis

int lpx_interior(glp_prob *lp);

Description

The routine lpx_interior is an interface to the LP problem solver based
on the primal-dual interior-point method.

This routine obtains problem data from the problem object, which the
parameter lp points to, calls the solver to solve the LP problem, and stores
the found solution back in the problem object.

Interior-point methods (also known as barrier methods) are more modern
and more powerful numerical methods for large-scale linear programming.
They especially fit for very sparse LP problems and allow solving such prob-
lems much faster than the simplex method.

Solving large LP problems may take a long time, so the routine displays
information about every interior point iteration3. This information is sent
to the output device and has the following format:

nnn: F = fff; rpi = ppp; rdi = ddd; gap = ggg

where nnn is iteration number, fff is the current value of the objective
function (in the case of maximization it has wrong sign), ppp is the current
relative primal infeasibility, ddd is the current relative dual infeasibility, and
ggg is the current primal-dual gap.

Should note that currently the GLPK interior-point solver does not in-
clude many important features, in particular:

it is not able to process dense columns. Thus, if the constraint matrix of
the LP problem has dense columns, the solving process will be inefficient;

it has no features against numerical instability. For some LP problems
premature termination may happen if the matrix ADAT becomes singular
or ill-conditioned;

it is not able to identify the optimal basis, which corresponds to the
found interior-point solution.

3Unlike the simplex method the interior point method usually needs 30—50 iterations
(independently on the problem size) in order to find an optimal solution.
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Returns

The routine lpx_interior returns one of the following exit codes:
LPX_E_OK the LP problem has been successfully solved (to opti-

mality).
LPX_E_FAULT the solver cannot start the search because the problem

is empty, i.e. has no rows and/or columns.
LPX_E_NOFEAS the problem has no feasible (primal or dual) solution.
LPX_E_NOCONV the search was prematurely terminated due to very

slow convergence or divergence.
LPX_E_ITLIM the search was prematurely terminated because the

simplex iterations limit has been exceeded.
LPX_E_INSTAB the search was prematurely terminated due to numer-

ical instability on solving Newtonian system.

2.8.2 Retrieve status of interior-point solution

Synopsis

int glp_ipt_status(glp_prob *lp);

Returns

The routine glp_ipt_status reports the status of a solution found by the
interior-point solver as follows:

GLP_UNDEF interior-point solution is undefined.
GLP_OPT interior-point solution is optimal.

2.8.3 Retrieve objective value

Synopsis

double glp_ipt_obj_val(glp_prob *lp);

Returns

The routine glp_ipt_obj_val returns value of the objective function for
interior-point solution.
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2.8.4 Retrieve row primal value

Synopsis

double glp_ipt_row_prim(glp_prob *lp, int i);

Returns

The routine glp_ipt_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

2.8.5 Retrieve row dual value

Synopsis

double glp_ipt_row_dual(glp_prob *lp, int i);

Returns

The routine glp_ipt_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.8.6 Retrieve column primal value

Synopsis

double glp_ipt_col_prim(glp_prob *lp, int j);

Returns

The routine glp_ipt_col_prim returns primal value of the structural vari-
able associated with j-th column.

2.8.7 Retrieve column dual value

Synopsis

double glp_ipt_col_dual(glp_prob *lp, int j);

Returns

The routine glp_ipt_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.
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2.9 Mixed integer programming routines

2.9.1 Set (change) column kind

Synopsis

void glp_set_col_kind(glp_prob *mip, int j, int kind);

Description

The routine glp_set_col_kind sets (changes) the kind of j-th column
(structural variable) as specified by the parameter kind:

GLP_CV continuous variable;
GLP_IV integer variable;
GLP_BV binary variable.
If a column is set to GLP_IV, its bounds must be exact integer numbers

with no tolerance, such that the condition bnd == floor(bnd) would hold.
Setting a column to GLP_BV has the same effect as if it were set to GLP_IV,

its lower bound were set 0, and its upper bound were set to 1.

2.9.2 Retrieve column kind

Synopsis

int glp_get_col_kind(glp_prob *mip, int j);

Returns

The routine glp_get_col_kind returns the kind of j-th column (structural
variable) as follows:

GLP_CV continuous variable;
GLP_IV integer variable;
GLP_BV binary variable.
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2.9.3 Retrieve number of integer columns

Synopsis

int glp_get_num_int(glp_prob *mip);

Returns

The routine glp_get_num_int returns the number of columns (structural
variables), which are marked as integer. Note that this number does include
binary columns.

2.9.4 Retrieve number of binary columns

Synopsis

int glp_get_num_bin(glp_prob *mip);

Returns

The routine glp_get_num_bin returns the number of columns (structural
variables), which are marked as integer and whose lower bound is zero and
upper bound is one.

2.9.5 Solve MIP problem with the branch-and-cut method

Synopsis

int glp_intopt(glp_prob *mip, const glp_iocp *parm);

Description

The routine glp_intopt is a driver to the MIP solver based on the branch-
and-cut method.

On entry the problem object should contain optimal solution to LP re-
laxation (which can be obtained with the routine glp_simplex).

The MIP solver has a set of control parameters. Values of the control
parameters can be passed in a structure glp_iocp, which the parameter
parm points to. For a detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_iocp by default
values of all control parameters using the routine glp_init_iocp (see the

63



next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_iocp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

Note that the MIP solver currently implemented in GLPK uses easy
heuristics for branching and backtracking, and therefore it is not perfect.
Most probably this solver can be used for solving MIP problems with one or
two hundreds of integer variables. Hard or very large scale MIP instances
cannot be solved with this routine.

Returns

0 The MIP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EBOUND Unable to start the search, because some double-bounded
variables have incorrect bounds or some integer variables
have non-integer (fractional) bounds.

GLP_EROOT Unable to start the search, because optimal basis for initial
LP relaxation is not provided.

GLP_EFAIL The search was prematurely terminated due to the solver
failure.

GLP_ETMLIM The search was prematurely terminated, because the time
limit has been exceeded.

GLP_ESTOP The search was prematurely terminated by application.
(This code may appear only if the advanced solver inter-
face is used.)

Advanced solver interface

The routine glp_intopt allows the user to control the branch-and-cut search
by passing to the solver a user-defined callback routine. For more details
see Chapter “Advanced API Routines”, Section “Branch-and-cut interface
routines”.

Solver terminal output

Solving many MIP problems may take a long time, so the solver reports
some information about best known solutions, which is sent to the output
device. This information has the following format:
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+nnn: mip = xxx <rho> yyy gap (ppp; qqq)

where: ‘nnn’ is the simplex iteration number; ‘xxx’ is a value of the objective
function for the best known integer feasible solution (if no integer feasible
solution has been found yet, ‘xxx’ is the text ‘not found yet’); ‘rho’ is the
string ‘>=’ (in case of minimization) or ‘<=’ (in case of maximization); ‘yyy’
is a global bound for exact integer optimum (i.e. the exact integer optimum
is always in the range from ‘xxx’ to ‘yyy’); ‘gap’ is the relative mip gap,
in percents, computed as gap = |xxx − yyy|/(|xxx| + DBL EPSILON) · 100%
(if gap is greater than 999.9%, it is not printed); ‘ppp’ is the number of
subproblems in the active list, ‘qqq’ is the number of subproblems which
have been already fathomed and therefore removed from the branch-and-
bound search tree.

Control parameters

This paragraph describes all control parameters currently used in the MIP
solver. Symbolic names of control parameters are names of corresponding
members in the structure glp_iocp.

int msg lev (default: GLP MSG ALL)
Message level for terminal output:
GLP_MSG_OFF — no output;
GLP_MSG_ERR — error and warning messages only;
GLP_MSG_ON — normal output;
GLP_MSG_ALL — full output (including informational messages).

int br tech (default: GLP BR DTH)
Branching technique option:
GLP_BR_FFV — first fractional variable;
GLP_BR_LFV — last fractional variable;
GLP_BR_MFV — most fractional variable;
GLP_BR_DTH — heuristic by Driebeck and Tomlin.

int bt tech (default: GLP BT BLB)
Backtracking technique option:
GLP_BT_DFS — depth first search;
GLP_BT_BFS — breadth first search;
GLP_BT_BLB — best local bound;
GLP_BT_BPH — best projection heuristic.
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int pp tech (default: GLP PP ALL)
Preprocessing technique option:
GLP_PP_NONE — disable preprocessing;
GLP_PP_ROOT — perform preprocessing only on the root level;
GLP_PP_ALL — perform preprocessing on all levels.

int gmi cuts (default: GLP OFF)
Gomory’s mixed integer cut option:
GLP_OFF — disable generating Gomory’s cuts;
GLP_ON — enable generating Gomory’s cuts.

int mir cuts (default: GLP OFF)
Mixed integer rounding (MIR) cut option:
GLP_OFF — disable generating MIR cuts;
GLP_ON — enable generating MIR cuts.

double tol int (default: 1e-5)
Absolute tolerance used to check if optimal solution to the current LP
relaxation is integer feasible. (Do not change this parameter without
detailed understanding its purpose.)

double tol obj (default: 1e-7)
Relative tolerance used to check if the objective value in optimal solution
to the current LP relaxation is not better than in the best known inte-
ger feasible solution. (Do not change this parameter without detailed
understanding its purpose.)

int tm lim (default: INT MAX)
Searching time limit, in milliseconds.

int out frq (default: 5000)
Output frequency, in milliseconds. This parameter specifies how fre-
quently the solver sends information about the solution process to the
terminal.

int out dly (default: 10000)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about solution of the current
LP relaxation with the simplex method to the terminal.

void (*cb func)(glp tree *tree, void *info) (default: NULL)
Entry point to the user-defined callback routine. NULL means the ad-
vanced solver interface is not used. For more details see Chapter “Ad-
vanced API Routines”, Section “Branch-and-cut interface routines”.
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void *cb info (default: NULL)
Transit pointer passed to the routine cb_func (see above).

int cb size (default: 0)
The number of extra (up to 256) bytes allocated for each node of the
branch-and-bound tree to store application-specific data. On creating a
node these bytes are initialized by binary zeros.
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2.9.6 Initialize integer optimizer control parameters

Synopsis

void glp_init_iocp(glp_iocp *parm);

Description

The routine glp_init_iocp initializes control parameters, which are used
by the branch-and-cut solver, with default values.

Default values of the control parameters are stored in a glp_iocp struc-
ture, which the parameter parm points to.

2.9.7 Solve MIP problem with the cut-and-branch method

Synopsis

int lpx_intopt(glp_prob *mip);

Description

The routine lpx_intopt is a driver to the MIP solver based on the cut-and-
branch method.

From the user’s standpoint it is similar to the routine glp_intopt (see
the previous subsection). However, it provides the following two additional
features:

1) presolving MIP that includes removing free, singleton and redundant
rows, improve bounds of columns, removing fixed columns, and reducing
constraint coefficients;

2) generating cutting planes (optionally) to improve LP relaxation of
the specified MIP problem before applying the branch-and-bound method.
(Currently the following cut classes are implemented: mixed cover cuts,
clique cuts, and Gomory’s mixed integer cuts.) To enable this option the
user should set the control parameter LPX_K_USECUTS.

The routine lpx_intopt (unlike the routine glp_intopt) does not re-
quire optimal solution to LP relaxation.

Returns

The routine lpx_intopt returns one of the following exit codes:
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LPX_E_OK the MIP problem has been successfully solved. (Note
that, for example, if the problem has no integer feasible
solution, this exit code is reported.)

LPX_E_FAULT unable to start the search because either
the problem is not of MIP class or
some integer variable has non-integer lower or upper
bound.

LPX_E_NOPFS the problem has no primal feasible solution (detected
either by the MIP presolver, or by the simplex method
on solving LP relaxation, or on re-optimization on gen-
erating cutting planes).

LPX_E_NODFS LP relaxation of the problem has no dual feasible so-
lution (detected either by the MIP presolver or by the
simplex method on solving LP relaxation).

LPX_E_ITLIM the search was prematurely terminated because the
simplex iterations limit has been exceeded.

LPX_E_TMLIM the search was prematurely terminated because the
time limit has been exceeded.

LPX_E_SING the search was prematurely terminated due to the
solver failure (the current basis matrix became singular
or ill-conditioned).

2.9.8 Retrieve status of MIP solution

Synopsis

int glp_mip_status(glp_prob *mip);

Returns

The routine glp_mip_status reports the status of a MIP solution found by
the MIP solver as follows:

GLP_UNDEF MIP solution is undefined.
GLP_OPT MIP solution is integer optimal.
GLP_FEAS MIP solution is integer feasible, however, its optimality

(or non-optimality) has not been proven, perhaps due
to premature termination of the search.

GLP_NOFEAS problem has no integer feasible solution (proven by the
solver).
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2.9.9 Retrieve objective value

Synopsis

double glp_mip_obj_val(glp_prob *mip);

Returns

The routine glp_mip_obj_val returns value of the objective function for
MIP solution.

2.9.10 Retrieve row value

Synopsis

double glp_mip_row_val(glp_prob *mip, int i);

Returns

The routine glp_mip_row_val returns value of the auxiliary variable asso-
ciated with i-th row for MIP solution.

2.9.11 Retrieve column value

Synopsis

double glp_mip_col_val(glp_prob *mip, int j);

Returns

The routine glp_mip_col_val returns value of the structural variable asso-
ciated with j-th column for MIP solution.
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Chapter 3

Utility API routines

3.1 Problem data reading/writing routines

3.1.1 Read problem data in MPS format

Synopsis

int glp_read_mps(glp_prob *lp, int fmt, const void *parm,
const char *fname);

Description

The routine glp_read_mps reads problem data in MPS format from a text
file. (The MPS format is described in Appendix B, page 130.)

The parameter fmt specifies the MPS format version as follows:
GLP_MPS_DECK fixed (ancient) MPS format;
GLP_MPS_FILE free (modern) MPS format.
The parameter parm is reserved for use in the future and must be speci-

fied as NULL.
The character string fname specifies a name of the text file to be read in.

(If the file name ends with suffix ‘.gz’, the file is assumed to be compressed,
in which case the routine glp_read_mps decompresses it “on the fly”.)

Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_mps returns zero. Oth-
erwise, it prints an error message and returns non-zero.
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3.1.2 Write problem data in MPS format

Synopsis

int glp_write_mps(glp_prob *lp, int fmt, const void *parm,
const char *fname);

Description

The routine glp_write_mps writes problem data in MPS format to a text
file. (The MPS format is described in Appendix B, page 130.)

The parameter fmt specifies the MPS format version as follows:
GLP_MPS_DECK fixed (ancient) MPS format;
GLP_MPS_FILE free (modern) MPS format.
The parameter parm is reserved for use in the future and must be speci-

fied as NULL.
The character string fname specifies a name of the text file to be writ-

ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_mps performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_mps returns zero.
Otherwise, it prints an error message and returns non-zero.

3.1.3 Read problem data in CPLEX LP format

Synopsis

int glp_read_lp(glp_prob *lp, const void *parm,
const char *fname);

Description

The routine glp_read_lp reads problem data in CPLEX LP format from a
text file. (The CPLEX LP format is described in Appendix C, page 144.)

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be read in.
(If the file name ends with suffix ‘.gz’, the file is assumed to be compressed,
in which case the routine glp_read_lp decompresses it “on the fly”.)
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Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_lp returns zero. Oth-
erwise, it prints an error message and returns non-zero.

3.1.4 Write problem data in CPLEX LP format

Synopsis

int glp_write_lp(glp_prob *lp, const void *parm,
const char *fname);

Description

The routine glp_write_lp writes problem data in CPLEX LP format to a
text file. (The CPLEX LP format is described in Appendix C, page 144.)

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_lp performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_lp returns zero. Oth-
erwise, it prints an error message and returns non-zero.

3.1.5 Read model in GNU MathProg modeling language

Synopsis

glp_prob *lpx_read_model(char *model, char *data,
char *output);

Description

The routine lpx_read_model reads and translates LP/MIP model (problem)
written in the GNU MathProg modeling language.1

1The GNU MathProg modeling language is a subset of the AMPL language.
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The character string model specifies name of input text file, which con-
tains model section and, optionally, data section. This parameter cannot be
NULL.

The character string data specifies name of input text file, which contains
data section. This parameter can be NULL. (If the data file is specified and
the model file also contains data section, that section is ignored and data
section from the data file is used.)

The character string output specifies name of output text file, to which
the output produced by display statements is written. If the parameter
output is NULL, the display output is sent to stdout via the routine print.

The routine lpx_read_model is an interface to the model translator,
which is a program that parses model description and translates it to some
internal data structures.

For detailed description of the modeling language see the document
“GLPK: Modeling Language GNU MathProg” included in the GLPK dis-
tribution.

Returns

If no errors occurred, the routine returns a pointer to the created problem
object. Otherwise the routine sends diagnostics to the output device and
returns NULL.
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3.2 Problem solution reading/writing routines

3.2.1 Write basic solution in printable format

Synopsis

int lpx_print_sol(glp_prob *lp, char *fname);

Description

The routine lpx_print_sol writes the current basic solution of an LP
problem, which is specified by the pointer lp, to a text file, whose name is
the character string fname, in printable format.

Information reported by the routine lpx_print_sol is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

3.2.2 Write bounds sensitivity information

Synopsis

int lpx_print_sens_bnds(glp_prob *lp, char *fname);

Description

The routine lpx_print_sens_bnds writes the bounds for objective coeffi-
cients, right-hand-sides of constraints, and variable bounds for which the
current optimal basic solution remains optimal (for LP only).

The LP is given by the pointer lp, and the output is written to the file
specified by fname. The current contents of the file will be overwritten.

Information reported by the routine lpx_print_sens_bnds is intended
mainly for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.
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3.2.3 Write interior point solution in printable format

Synopsis

int lpx_print_ips(glp_prob *lp, char *fname);

Description

The routine lpx_print_ips writes the current interior point solution of an
LP problem, which the parameter lp points to, to a text file, whose name
is the character string fname, in printable format.

Information reported by the routine lpx_print_ips is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

3.2.4 Write MIP solution in printable format

Synopsis

int lpx_print_mip(glp_prob *lp, char *fname);

Description

The routine lpx_print_mip writes a best known integer solution of a MIP
problem, which is specified by the pointer lp, to a text file, whose name is
the character string fname, in printable format.

Information reported by the routine lpx_print_mip is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.
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3.2.5 Read basic solution from text file

Synopsis

int glp_read_sol(glp_prob *lp, const char *fname);

Description

The routine glp_read_sol reads basic solution from a text file whose name
is specified by the parameter fname into the problem object.

For the file format see description of the routine glp_write_sol.

Returns

On success the routine returns zero, otherwise non-zero.

3.2.6 Write basic solution to text file

Synopsis

int glp_write_sol(glp_prob *lp, const char *fname);

Description

The routine glp_write_sol writes the current basic solution to a text file
whose name is specified by the parameter fname. This file can be read back
with the routine glp_read_sol.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_sol is a plain text file, which
contains the following information:

m n
p_stat d_stat obj_val
r_stat[1] r_prim[1] r_dual[1]
. . .
r_stat[m] r_prim[m] r_dual[m]
c_stat[1] c_prim[1] c_dual[1]
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. . .
c_stat[n] c_prim[n] c_dual[n]

where:
m is the number of rows (auxiliary variables);
n is the number of columns (structural variables);
p_stat is the primal status of the basic solution (GLP_UNDEF = 1, GLP_FEAS
= 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);
d_stat is the dual status of the basic solution (GLP_UNDEF = 1, GLP_FEAS
= 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);
obj_val is the objective value;
r_stat[i], i = 1, . . . ,m, is the status of i-th row (GLP_BS = 1, GLP_NL =
2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);
r_prim[i], i = 1, . . . ,m, is the primal value of i-th row;
r_dual[i], i = 1, . . . ,m, is the dual value of i-th row;
c_stat[j], j = 1, . . . , n, is the status of j-th column (GLP_BS = 1, GLP_NL
= 2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);
c_prim[j], j = 1, . . . , n, is the primal value of j-th column;
c_dual[j], j = 1, . . . , n, is the dual value of j-th column.

3.2.7 Read interior-point solution from text file

Synopsis

int glp_read_ipt(glp_prob *lp, const char *fname);

Description

The routine glp_read_ipt reads interior-point solution from a text file
whose name is specified by the parameter fname into the problem object.

For the file format see description of the routine glp_write_ipt.

Returns

On success the routine returns zero, otherwise non-zero.
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3.2.8 Write interior-point solution to text file

Synopsis

int glp_write_ipt(glp_prob *lp, const char *fname);

Description

The routine glp_write_ipt writes the current interior-point solution to a
text file whose name is specified by the parameter fname. This file can be
read back with the routine glp_read_ipt.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_ipt is a plain text file, which
contains the following information:

m n
stat obj_val
r_prim[1] r_dual[1]
. . .
r_prim[m] r_dual[m]
c_prim[1] c_dual[1]
. . .
c_prim[n] c_dual[n]

where:
m is the number of rows (auxiliary variables);
n is the number of columns (structural variables);
stat is the solution status (GLP_UNDEF = 1 or GLP_OPT = 5);
obj_val is the objective value;
r_prim[i], i = 1, . . . ,m, is the primal value of i-th row;
r_dual[i], i = 1, . . . ,m, is the dual value of i-th row;
c_prim[j], j = 1, . . . , n, is the primal value of j-th column;
c_dual[j], j = 1, . . . , n, is the dual value of j-th column.
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3.2.9 Read MIP solution from text file

Synopsis

int glp_read_mip(glp_prob *mip, const char *fname);

Description

The routine glp_read_mip reads MIP solution from a text file whose name
is specified by the parameter fname into the problem object.

For the file format see description of the routine glp_write_mip.

Returns

On success the routine returns zero, otherwise non-zero.

3.2.10 Write MIP solution to text file

Synopsis

int glp_write_mip(glp_prob *mip, const char *fname);

Description

The routine glp_write_mip writes the current MIP solution to a text file
whose name is specified by the parameter fname. This file can be read back
with the routine glp_read_mip.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_sol is a plain text file, which
contains the following information:

m n
stat obj_val
r_val[1]
. . .
r_val[m]
c_val[1]
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. . .
c_val[n]

where:
m is the number of rows (auxiliary variables);
n is the number of columns (structural variables);
stat is the solution status (GLP_UNDEF = 1, GLP_FEAS = 2, GLP_NOFEAS =
4, or GLP_OPT = 5);
obj_val is the objective value;
r_val[i], i = 1, . . . ,m, is the value of i-th row;
c_val[j], j = 1, . . . , n, is the value of j-th column.
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Chapter 4

Advanced API Routines

4.1 LP basis and simplex tableau routines

4.1.1 Background

Using vector and matrix notations LP problem (1.1)—(1.3) (see Section 1.1,
page 9) can be stated as follows:

minimize (or maximize)

z = cTxS + c0 (3.1)

subject to linear constraints

xR = AxS (3.2)

and bounds of variables

lR ≤ xR ≤ uR

lS ≤ xS ≤ uS
(3.3)

where:
xR = (x1, x2, . . . , xm) is the vector of auxiliary variables;
xS = (xm+1, xm+2, . . . , xm+n) is the vector of structural variables;
z is the objective function;
c = (c1, c2, . . . , cn) is the vector of objective coefficients;
c0 is the constant term (“shift”) of the objective function;
A = (a11, a12, . . . , amn) is the constraint matrix;
lR = (l1, l2, . . . , lm) is the vector of lower bounds of auxiliary variables;
uR = (u1, u2, . . . , um) is the vector of upper bounds of auxiliary variables;
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lS = (lm+1, lm+2, . . . , lm+n) is the vector of lower bounds of structural vari-
ables;
uS = um+1, um+2, . . . , um+n is the vector of upper bounds of structural
variables.

From the simplex method’s standpoint there is no difference between
auxiliary and structural variables. This allows combining all these variables
into one vector that leads to the following problem statement:

minimize (or maximize)

z = (0 | c)Tx+ c0 (3.4)

subject to linear constraints

(I | −A)x = 0 (3.5)

and bounds of variables

l ≤ x ≤ u (3.6)

where:
x = (xR | xS) is the (m+ n)-vector of (all) variables;
(0 | c) is the (m+ n)-vector of objective coefficients;1

(I | −A) is the augmented constraint m× (m+ n)-matrix;2

l = (lR | lS) is the (m+ n)-vector of lower bounds of (all) variables;
u = (uR | uS) is the (m+ n)-vector of upper bounds of (all) variables.

By definition an LP basic solution geometrically is a point in the space
of all variables, which is the intersection of planes corresponding to active
constraints3. The space of all variables has the dimension m+n, therefore, to
define some basic solution we have to define m+ n active constraints. Note
that m constraints (3.5) being linearly independent equalities are always
active, so remaining n active constraints can be chosen only from bound
constraints (3.6).

A variable is called non-basic, if its (lower or upper) bound is active,
otherwise it is called basic. Since, as was said above, exactly n bound con-
straints must be active, in any basic solution there are always n non-basic

1Subvector 0 corresponds to objective coefficients at auxiliary variables.
2Note that due to auxiliary variables matrix (I |−A) contains the unity submatrix and

therefore has full rank. This means, in particular, that the system (3.5) has no linearly
dependent constraints.

3A constraint is called active if in a given point it is satisfied as equality, otherwise it
is called inactive.
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variables and m basic variables. (Note that a free variable also can be
non-basic. Although such variable has no bounds, we can think it as the
difference between two non-negative variables, which both are non-basic in
this case.)

Now consider how to determine numeric values of all variables for a given
basic solution.

Let Π be an appropriate permutation matrix of the order (m+n). Then
we can write: (

xB

xN

)
= Π

(
xR

xS

)
= Πx, (3.7)

where xB is the vector of basic variables, xN is the vector of non-basic
variables, x = (xR | xS) is the vector of all variables in the original order. In
this case the system of linear constraints (3.5) can be rewritten as follows:

(I | −A)ΠT Πx = 0 ⇒ (B | N)

(
xB

xN

)
= 0, (3.8)

where
(B | N) = (I | −A)ΠT . (3.9)

Matrix B is a square non-singular m ×m-matrix, which is composed from
columns of the augmented constraint matrix corresponding to basic vari-
ables. It is called the basis matrix or simply the basis. Matrix N is a rect-
angular m × n-matrix, which is composed from columns of the augmented
constraint matrix corresponding to non-basic variables.

From (3.8) it follows that:

BxB +NxN = 0, (3.10)

therefore,
xB = −B−1NxN . (3.11)

Thus, the formula (3.11) shows how to determine numeric values of basic
variables xB assuming that non-basic variables xN are fixed on their active
bounds.

The m× n-matrix
Ξ = −B−1N, (3.12)

which appears in (3.11), is called the simplex tableau.4 It shows how basic
variables depend on non-basic variables:

xB = ΞxN . (3.13)
4This definition corresponds to the GLPK implementation.
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The system (3.13) is equivalent to the system (3.5) in the sense that they
both define the same set of points in the space of (primal) variables, which
satisfy to these systems. If, moreover, values of all basic variables satisfy
to their bound constraints (3.3), the corresponding basic solution is called
(primal) feasible, otherwise (primal) infeasible. It is understood that any
(primal) feasible basic solution satisfy to all constraints (3.2) and (3.3).

The LP theory says that if LP has optimal solution, it has (at least one)
basic feasible solution, which corresponds to the optimum. And the most
natural way to determine whether a given basic solution is optimal or not
is to use the Karush—Kuhn—Tucker optimality conditions.

For the problem statement (3.4)—(3.6) the optimality conditions are the
following:5

(I | −A)x = 0 (3.14)

(I | −A)Tπ + λl + λu = ∇z = (0 | c)T (3.15)

l ≤ x ≤ u (3.16)

λl ≥ 0, λu ≤ 0 (minimization) (3.17)

λl ≤ 0, λu ≥ 0 (maximization) (3.18)

(λl)k(xk − lk) = 0, (λu)k(xk − uk) = 0, k = 1, 2, . . . ,m+ n (3.19)

where: π = (π1, π2, . . . , πm) is a m-vector of Lagrange multipliers for equal-
ity constraints (3.5); λl = [(λl)1, (λl)2, . . . , (λl)n] is a n-vector of Lagrange
multipliers for lower bound constraints (3.6); λu = [(λu)1, (λu)2, . . . , (λu)n]
is a n-vector of Lagrange multipliers for upper bound constraints (3.6).

Condition (3.14) is the primal (original) system of equality constraints
(3.5).

Condition (3.15) is the dual system of equality constraints. It requires
the gradient of the objective function to be a linear combination of normals
to the planes defined by constraints of the original problem.

Condition (3.16) is the primal (original) system of bound constraints
(3.6).

Condition (3.17) (or (3.18) in case of maximization) is the dual system
of bound constraints.

Condition (3.19) is the complementary slackness condition. It requires,
for each original (auxiliary or structural) variable xk, that either its (lower or
upper) bound must be active, or zero bound of the corresponding Lagrange
multiplier ((λl)k or (λu)k) must be active.

5These conditions can be appiled to any solution, not only to a basic solution.
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In GLPK two multipliers (λl)k and (λu)k for each primal (original) vari-
able xk, k = 1, 2, . . . ,m+ n, are combined into one multiplier:

λk = (λl)k + (λu)k, (3.20)

which is called a dual variable for xk. This cannot lead to the ambiguity,
because both lower and upper bounds of xk cannot be active at the same
time,6 so at least one of (λl)k and (λu)k must be equal to zero, and because
these multipliers have different signs, the combined multiplier, which is their
sum, uniquely defines each of them.

Using dual variables λk the dual system of bound constraints (3.17) and
(3.18) can be written in the form of so called “rule of signs” as follows:

Original bound Minimization Maximization
constraint (λl)k (λu)k (λl)k + (λu)k (λl)k (λu)k (λl)k + (λu)k

−∞ < xk < +∞ = 0 = 0 λk = 0 = 0 = 0 λk = 0
xk ≥ lk ≥ 0 = 0 λk ≥ 0 ≤ 0 = 0 λk ≤ 0
xk ≤ uk = 0 ≤ 0 λk ≤ 0 = 0 ≥ 0 λk ≥ 0

lk ≤ xk ≤ uk ≥ 0 ≤ 0 −∞<λk<+∞ ≤ 0 ≥ 0 −∞<λk<+∞
xk = lk = uk ≥ 0 ≤ 0 −∞<λk<+∞ ≤ 0 ≥ 0 −∞<λk<+∞

May note that each primal variable xk has its dual counterpart λk and
vice versa. This allows applying the same partition for the vector of dual
variables as (3.7): (

λB

λN

)
= Πλ, (3.21)

where λB is a vector of dual variables for basic variables xB, λN is a vector
of dual variables for non-basic variables xN .

By definition, bounds of basic variables are inactive constraints, so in
any basic solution λB = 0. Corresponding values of dual variables λN for
non-basic variables xN can be determined in the following way. From the
dual system (3.15) we have:

(I | −A)Tπ + λ = (0 | c)T , (3.22)

so multiplying both sides of (3.22) by matrix Π gives:

Π(I | −A)Tπ + Πλ = Π(0 | c)T . (3.23)
6If xk is a fixed variable, we can think it as double-bounded variable lk ≤ xk ≤ uk,

where lk = uk.
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From (3.9) it follows that

Π(I | −A)T = [(I | −A)ΠT ]T = (B | N)T . (3.24)

Further, we can apply the partition (3.7) also to the vector of objective
coefficients (see (3.4)): (

cB
cN

)
= Π

(
0
c

)
, (3.25)

where cB is a vector of objective coefficients at basic variables, cN is a vector
of objective coefficients at non-basic variables. Now, substituting (3.24),
(3.21), and (3.25) into (3.23), leads to:

(B | N)Tπ + (λB | λN )T = (cB | cN )T , (3.26)

and transposing both sides of (3.26) gives the system:(
BT

NT

)
π +

(
λB

λN

)
=

(
cB
cT

)
, (3.27)

which can be written as follows:{
BTπ + λB = cB
NTπ + λN = cN

(3.28)

Lagrange multipliers π = (πi) correspond to equality constraints (3.5) and
therefore can have any sign. This allows resolving the first subsystem of
(3.28) as follows:7

π = B−T (cB − λB) = −B−TλB +B−T cB, (3.29)

and substitution of π from (3.29) into the second subsystem of (3.28) gives:

λN = −NTπ + cN = NTB−TλB + (cN −NTB−T cB). (3.30)

The latter system can be written in the following final form:

λN = −ΞTλB + d, (3.31)

where Ξ is the simplex tableau (see (3.12)), and

d = cN −NTB−T cB = cN + ΞT cB (3.32)

is the vector of so called reduced costs of non-basic variables.
7B−T means (BT )−1 = (B−1)T .
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Above it was said that in any basic solution λB = 0, so λN = d as it
follows from (3.31).

The system (3.31) is equivalent to the system (3.15) in the sense that
they both define the same set of points in the space of dual variables λ,
which satisfy to these systems. If, moreover, values of all dual variables
λN (i.e. reduced costs d) satisfy to their bound constraints (i.e. to the
“rule of signs”; see the table above), the corresponding basic solution is
called dual feasible, otherwise dual infeasible. It is understood that any dual
feasible solution satisfy to all constraints (3.15) and (3.17) (or (3.18) in case
of maximization).

It can be easily shown that the complementary slackness condition (3.19)
is always satisfied for any basic solution. Therefore, a basic solution8 is
optimal if and only if it is primal and dual feasible, because in this case it
satifies to all the optimality conditions (3.14)—(3.19).

The meaning of reduced costs d = (dj) of non-basic variables can be
explained in the following way. From (3.4), (3.7), and (3.25) it follows that:

z = cTBxB + cTNxN + c0. (3.33)

Substituting xB from (3.11) into (3.33) we can eliminate basic variables and
express the objective only through non-basic variables:

z = cTB(−B−1NxN ) + cTNxN + c0 =

= (cTN − cTBB−1N)xN + c0 =

= (cN −NTB−T cB)TxN + c0 =

= dTxN + c0.

(3.34)

From (3.34) it is seen that reduced cost dj shows how the objective function
z depends on non-basic variable (xN )j in the neighborhood of the current
basic solution, i.e. while the current basis remains unchanged.

8It is assumed that a complete basic solution has the form (x, λ), i.e. it includes primal
as well as dual variables.
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4.1.2 Check if the basis factorization exists

Synopsis

int glp_bf_exists(glp_prob *lp);

Returns

If the basis factorization for the current basis associated with the specified
problem object exists and therefore is available for computations, the routine
glp_bf_exists returns non-zero. Otherwise the routine returns zero.

Comments

Let the problem object have m rows and n columns. In GLPK the basis
matrix B is a square non-singular matrix of the order m, whose columns
correspond to basic (auxiliary and/or structural) variables. It is defined by
the following main equality:9

(B | N) = (I | −A)ΠT ,

where I is the unity matrix of the order m, whose columns correspond to
auxiliary variables; A is the original constraint m×n-matrix, whose columns
correspond to structural variables; (I | −A) is the augmented constraint
m× (m+ n)-matrix, whose columns correspond to all (auxiliary and struc-
tural) variables following in the original order; Π is a permutation matrix
of the order m + n; and N is a rectangular m × n-matrix, whose columns
correspond to non-basic (auxiliary and/or structural) variables.

For various reasons it may be necessary to solve linear systems with
matrix B. To provide this possibility the GLPK implementation maintains
an invertable form of B (that is, some representation of B−1) called the
basis factorization, which is an internal component of the problem object.
Typically, the basis factorization is computed by the simplex solver, which
keeps it in the problem object to be available for other computations.

Should note that any changes in the problem object, which affects the
basis matrix (e.g. changing the status of a row or column, changing a basic
column of the constraint matrix, removing an active constraint, etc.), inval-
idates the basis factorization. So before calling any API routine, which uses
the basis factorization, the application program must make sure (using the
routine glp_bf_exists) that the factorization exists and therefore available
for computations.

9For more details see Subsection 4.1.1, page 82.

89



4.1.3 Compute the basis factorization

Synopsis

int glp_factorize(glp_prob *lp);

Description

The routine glp_factorize computes the basis factorization for the current
basis associated with the specified problem object.10

The basis factorization is computed from “scratch” even if it exists, so
the application program may use the routine glp_bf_exists, and, if the
basis factorization already exists, not to call the routine glp_factorize to
prevent an extra work.

The routine glp_factorize does not compute components of the basic
solution (i.e. primal and dual values).

Returns

0 The basis factorization has been successfully computed.

GLP_EBADB The basis matrix is invalid, because the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

GLP_ESING The basis matrix is singular within the working precision.

GLP_ECOND The basis matrix is ill-conditioned, i.e. its condition num-
ber is too large.

10The current basis is defined by the current statuses of rows (auxiliary variables) and
columns (structural variables).
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4.1.4 Check if the basis factorization has been updated

Synopsis

int glp_bf_updated(glp_prob *lp);

Returns

If the basis factorization has been just computed from “scratch”, the rou-
tine glp_bf_updated returns zero. Otherwise, if the factorization has been
updated at least once, the routine returns non-zero.

Comments

Updating the basis factorization means recomputing it to reflect changes in
the basis matrix. For example, on every iteration of the simplex method
some column of the current basis matrix is replaced by a new column that
gives a new basis matrix corresponding to the adjacent basis. In this case
computing the basis factorization for the adjacent basis from “scratch” (as
the routine glp_factorize does) would be too time-consuming.

On the other hand, since the basis factorization update is a numeric
computational procedure, applying it many times may lead to accumulating
round-off errors. Therefore the basis is periodically refactorized (reinverted)
from “scratch” (with the routine glp_factorize) that allows improving its
numerical properties.

The routine glp_bf_updated allows determining if the basis factoriza-
tion has been updated at least once since it was computed from “scratch”.
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4.1.5 Retrieve basis factorization control parameters

Synopsis

void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm);

Description

The routine glp_get_bfcp retrieves control parameters, which are used on
computing and updating the basis factorization associated with the specified
problem object.

Current values of the control parameters are stored in a glp_bfcp struc-
ture, which the parameter parm points to. For a detailed description of the
structure glp_bfcp see comments to the routine glp_set_bfcp in the next
subsection.

Comments

The purpose of the routine glp_get_bfcp is two-fold. First, it allows the
application program obtaining current values of control parameters used by
internal GLPK routines, which compute and update the basis factorization.

The second purpose of this routine is to provide proper values for all
fields of the structure glp_bfcp in the case when the application program
needs to change some control parameters.

4.1.6 Change basis factorization control parameters

Synopsis

void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm);

Description

The routine glp_set_bfcp changes control parameters, which are used by
internal GLPK routines on computing and updating the basis factorization
associated with the specified problem object.

New values of the control parameters should be passed in a structure
glp_bfcp, which the parameter parm points to. For a detailed description
of the structure glp_bfcp see paragraph “Control parameters” below.

The parameter parm can be specified as NULL, in which case all control
parameters are reset to their default values.
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Comments

Before changing some control parameters with the routine glp_set_bfcp the
application program should retrieve current values of all control parameters
with the routine glp_get_bfcp. This is needed for backward compatibil-
ity, because in the future there may appear new members in the structure
glp_bfcp.

Note that new values of control parameters come into effect on a next
computation of the basis factorization, not immediately.

Example

glp_prob *lp;
glp_bfcp parm;
. . .
/* retrieve current values of control parameters */
glp_get_bfcp(lp, &parm);
/* change the threshold pivoting tolerance */
parm.piv_tol = 0.05;
/* set new values of control parameters */
glp_set_bfcp(lp, &parm);
. . .

Control parameters

This paragraph describes all basis factorization control parameters currently
used in the package. Symbolic names of control parameters are names of
corresponding members in the structure glp_bfcp.

int type (default: GLP BF FT)
Basis factorization type:
GLP_BF_FT — LU + Forrest–Tomlin update;
GLP_BF_BG — LU + Schur complement + Bartels–Golub update;
GLP_BF_GR — LU + Schur complement + Givens rotation update.
In case of GLP_BF_FT the update is applied to matrix U , while in cases
of GLP_BF_BG and GLP_BF_GR the update is applied to the Schur com-
plement.

int lu size (default: 0)
The initial size of the Sparse Vector Area, in non-zeros, used on com-
puting LU -factorization of the basis matrix for the first time. If this
parameter is set to 0, the initial SVA size is determined automatically.
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double piv tol (default: 0.10)
Threshold pivoting (Markowitz) tolerance, 0 < piv_tol < 1, used on
computing LU -factorization of the basis matrix. Element uij of the ac-
tive submatrix of factor U fits to be pivot if it satisfies to the stability
criterion |uij | >= piv tol · max |ui∗|, i.e. if it is not very small in the
magnitude among other elements in the same row. Decreasing this pa-
rameter may lead to better sparsity at the expense of numerical accuracy,
and vice versa.

int piv lim (default: 4)
This parameter is used on computing LU -factorization of the basis ma-
trix and specifies how many pivot candidates needs to be considered on
choosing a pivot element, piv_lim ≥ 1. If piv_lim candidates have been
considered, the pivoting routine prematurely terminates the search with
the best candidate found.

int suhl (default: GLP ON)
This parameter is used on computing LU -factorization of the basis ma-
trix. Being set to GLP ON it enables applying the following heuristic
proposed by Uwe Suhl: if a column of the active submatrix has no eligi-
ble pivot candidates, it is no more considered until it becomes a column
singleton. In many cases this allows reducing the time needed for pivot
searching. To disable this heuristic the parameter suhl should be set to
GLP OFF.

double eps tol (default: 1e-15)
Epsilon tolerance, eps_tol ≥ 0, used on computing LU -factorization of
the basis matrix. If an element of the active submatrix of factor U is
less than eps_tol in the magnitude, it is replaced by exact zero.

double max gro (default: 1e+10)
Maximal growth of elements of factor U , max_gro ≥ 1, allowable on
computing LU -factorization of the basis matrix. If on some elimination
step the ratio ubig/bmax (where ubig is the largest magnitude of elements
of factor U appeared in its active submatrix during all the factorization
process, bmax is the largest magnitude of elements of the basis matrix to
be factorized), the basis matrix is considered as ill-conditioned.
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int nfs max (default: 50)
Maximal number of additional row-like factors (entries of the eta file),
nfs_max ≥ 1, which can be added to LU -factorization of the basis matrix
on updating it with the Forrest–Tomlin technique. This parameter is
used only once, before LU -factorization is computed for the first time,
to allocate working arrays. As a rule, each update adds one new factor
(however, some updates may need no addition), so this parameter limits
the number of updates between refactorizations.

double upd tol (default: 1e-6)
Update tolerance, 0 < upd_tol < 1, used on updating LU -factorization
of the basis matrix with the Forrest–Tomlin technique. If after updat-
ing the magnitude of some diagonal element ukk of factor U becomes
less than upd tol · max(|uk∗|, |u∗k|), the factorization is considered as
inaccurate.

int nrs max (default: 50)
Maximal number of additional rows and columns, nrs_max ≥ 1, which
can be added to LU -factorization of the basis matrix on updating it with
the Schur complement technique. This parameter is used only once, be-
fore LU -factorization is computed for the first time, to allocate working
arrays. As a rule, each update adds one new row and column (how-
ever, some updates may need no addition), so this parameter limits the
number of updates between refactorizations.

int rs size (default: 0)
The initial size of the Sparse Vector Area, in non-zeros, used to store
non-zero elements of additional rows and columns introduced on up-
dating LU -factorization of the basis matrix with the Schur complement
technique. If this parameter is set to 0, the initial SVA size is determined
automatically.
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4.1.7 Retrieve the basis header information

Synopsis

int glp_get_bhead(glp_prob *lp, int k);

Description

The routine glp_get_bhead returns the basis header information for the
current basis associated with the specified problem object.

Returns

If basic variable (xB)k, 1 ≤ k ≤ m, is i-th auxiliary variable (1 ≤ i ≤ m), the
routine returns i. Otherwise, if (xB)k is j-th structural variable (1 ≤ j ≤ n),
the routine returns m+j. Here m is the number of rows and n is the number
of columns in the problem object.

Comments

Sometimes the application program may need to know which original (aux-
iliary and structural) variable correspond to a given basic variable, or, that
is the same, which column of the augmented constraint matrix (I | −A)
correspond to a given column of the basis matrix B.

The correspondence is defined as follows:11(
xB

xN

)
= Π

(
xR

xS

)
⇔

(
xR

xS

)
= ΠT

(
xB

xN

)
,

where xB is the vector of basic variables, xN is the vector of non-basic
variables, xR is the vector of auxiliary variables following in their original
order,12 xS is the vector of structural variables following in their original
order, Π is a permutation matrix (which is a component of the basis factor-
ization).

Thus, if (xB)k = (xR)i is i-th auxiliary variable, the routine returns i,
and if (xB)k = (xS)j is j-th structural variable, the routine returns m + j,
where m is the number of rows in the problem object.

11For more details see Subsection 4.1.1, page 82.
12The original order of auxiliary and structural variables is defined by the ordinal num-

bers of corresponding rows and columns in the problem object.
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4.1.8 Retrieve row index in the basis header

Synopsis

int glp_get_row_bind(glp_prob *lp, int i);

Returns

The routine glp_get_row_bind returns the index k of basic variable (xB)k,
1 ≤ k ≤ m, which is i-th auxiliary variable (that is, the auxiliary variable
corresponding to i-th row), 1 ≤ i ≤ m, in the current basis associated with
the specified problem object, where m is the number of rows. However, if
i-th auxiliary variable is non-basic, the routine returns zero.

Comments

The routine glp_get_row_bind is an inverse to the routine glp_get_bhead:
if glp_get_bhead(lp, k) returns i, glp_get_row_bind(lp, i) returns k, and
vice versa.

4.1.9 Retrieve column index in the basis header

Synopsis

int glp_get_col_bind(glp_prob *lp, int j);

Returns

The routine glp_get_col_bind returns the index k of basic variable (xB)k,
1 ≤ k ≤ m, which is j-th structural variable (that is, the structural variable
corresponding to j-th column), 1 ≤ j ≤ n, in the current basis associated
with the specified problem object, where m is the number of rows, n is the
number of columns. However, if j-th structural variable is non-basic, the
routine returns zero.

Comments

The routine glp_get_col_bind is an inverse to the routine glp_get_bhead:
if glp_get_bhead(lp, k) returns m+ j, glp_get_col_bind(lp, j) returns k,
and vice versa.
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4.1.10 Perform forward transformation (FTRAN)

Synopsis

void glp_ftran(glp_prob *lp, double x[]);

Description

The routine glp_ftran performs forward transformation (FTRAN), i.e. it
solves the system Bx = b, where B is the basis matrix associated with the
specified problem object, x is the vector of unknowns to be computed, b is
the vector of right-hand sides.

On entry to the routine elements of the vector b should be stored in
locations x[1], . . . , x[m], where m is the number of rows. On exit the
routine stores elements of the vector x in the same locations.

4.1.11 Perform backward transformation (BTRAN)

Synopsis

void glp_btran(glp_prob *lp, double x[]);

Description

The routine glp_btran performs backward transformation (BTRAN), i.e.
it solves the system BTx = b, where BT is a matrix transposed to the basis
matrix B associated with the specified problem object, x is the vector of
unknowns to be computed, b is the vector of right-hand sides.

On entry to the routine elements of the vector b should be stored in
locations x[1], . . . , x[m], where m is the number of rows. On exit the
routine stores elements of the vector x in the same locations.
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4.1.12 Warm up LP basis

Synopsis

int lpx_warm_up(glp_prob *lp);

Description

The routine lpx_warm_up “warms up” the LP basis for the specified problem
object using current statuses assigned to rows and columns (i.e. to auxiliary
and structural variables).

“Warming up” includes reinverting (factorizing) the basis matrix (if
neccesary), computing primal and dual components as well as determining
primal and dual statuses of the basic solution.

Returns

The routine lpx_warm_up returns one of the following exit codes:
LPX_E_OK the LP basis has been successfully “warmed up”.
LPX_E_EMPTY the problem has no rows and/or no columns.
LPX_E_BADB the LP basis is invalid, because the number of basic

variables is not the same as the number of rows.
LPX_E_SING the basis matrix is numerically singular or ill-condi-

tioned.

4.1.13 Compute row of the simplex tableau

Synopsis

int glp_eval_tab_row(glp_prob *lp, int k, int ind[],
double val[]);

Description

The routine glp_eval_tab_row computes a row of the current simplex
tableau (see Subsection 3.1.1, formula (3.12)), which (row) corresponds to
some basic variable specified by the parameter k as follows: if 1 ≤ k ≤ m,
the basic variable is k-th auxiliary variable, and if m+ 1 ≤ k ≤ m+ n, the
basic variable is (k −m)-th structural variable, where m is the number of
rows and n is the number of columns in the specified problem object. The
basis factorization must exist.
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The computed row shows how the specified basic variable depends on
non-basic variables:

xk = (xB)i = ξi1(xN )1 + ξi2(xN )2 + . . .+ ξin(xN )n,

where ξi1, ξi2, . . . , ξin are elements of the simplex table row, (xN )1, (xN )2,
. . . , (xN )n are non-basic (auxiliary and structural) variables.

The routine stores column indices and corresponding numeric values of
non-zero elements of the computed row in unordered sparse format in loca-
tions ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively, where
0 ≤ len ≤ n is the number of non-zero elements in the row returned on exit.

Element indices stored in the array ind have the same sense as index k,
i.e. indices 1 to m denote auxiliary variables while indices m + 1 to m + n
denote structural variables (all these variables are obviously non-basic by
definition).

Returns

The routine glp_eval_tab_row returns len, which is the number of non-
zero elements in the simplex table row stored in the arrays ind and val.

Comments

A row of the simplex table is computed as follows. At first, the routine checks
that the specified variable xk is basic and uses the permutation matrix Π
(3.7) to determine index i of basic variable (xB)i, which corresponds to xk.

The row to be computed is i-th row of the matrix Ξ (3.12), therefore:

ξi = eTi Ξ = −eTi B−1N = −(B−T ei)TN,

where ei is i-th unity vector. So the routine performs BTRAN to obtain
i-th row of the inverse B−1:

%i = B−T ei,

and then computes elements of the simplex table row as inner products:

ξij = −%T
i Nj , j = 1, 2, . . . , n,

where Nj is j-th column of matrix N (3.9), which (column) corresponds to
non-basic variable (xN )j . The permutation matrix Π is used again to convert
indices j of non-basic columns to original ordinal numbers of auxiliary and
structural variables.
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4.1.14 Compute column of the simplex tableau

Synopsis

int glp_eval_tab_col(glp_prob *lp, int k, int ind[],
double val[]);

Description

The routine glp_eval_tab_col computes a column of the current simplex
tableau (see Subsection 3.1.1, formula (3.12)), which (column) corresponds
to some non-basic variable specified by the parameter k: if 1 ≤ k ≤ m, the
non-basic variable is k-th auxiliary variable, and if m+ 1 ≤ k ≤ m+ n, the
non-basic variable is (k−m)-th structural variable, where m is the number
of rows and n is the number of columns in the specified problem object. The
basis factorization must exist.

The computed column shows how basic variables depends on the speci-
fied non-basic variable xk = (xN )j :

(xB)1 = . . .+ ξ1j(xN )j + . . .
(xB)2 = . . .+ ξ2j(xN )j + . . .
. . . . . . . . . .

(xB)m = . . .+ ξmj(xN )j + . . .

where ξ1j , ξ2j , . . . , ξmj are elements of the simplex table column, (xB)1,
(xB)2, . . . , (xB)m are basic (auxiliary and structural) variables.

The routine stores row indices and corresponding numeric values of non-
zero elements of the computed column in unordered sparse format in loca-
tions ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively, where
0 ≤ len ≤ m is the number of non-zero elements in the column returned on
exit.

Element indices stored in the array ind have the same sense as index
k, i.e. indices 1 to m denote auxiliary variables while indices m + 1 to
m+ n denote structural variables (all these variables are obviously basic by
definition).

Returns

The routine glp_eval_tab_col returns len, which is the number of non-
zero elements in the simplex table column stored in the arrays ind and val.
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Comments

A column of the simplex table is computed as follows. At first, the routine
checks that the specified variable xk is non-basic and uses the permutation
matrix Π (3.7) to determine index j of non-basic variable (xN )j , which
corresponds to xk.

The column to be computed is j-th column of the matrix Ξ (3.12), there-
fore:

Ξj = Ξej = −B−1Nej = −B−1Nj ,

where ej is j-th unity vector, Nj is j-th column of matrix N (3.9). So
the routine performs FTRAN to transform Nj to the simplex table column
Ξj = (ξij) and uses the permutation matrix Π to convert row indices i to
original ordinal numbers of auxiliary and structural variables.

4.1.15 Transform explicitly specified row

Synopsis

int lpx_transform_row(glp_prob *lp, int len, int ind[],
double val[]);

Description

The routine lpx_transform_row performs the same operation as the routine
lpx_eval_tab_row, except that the transformed row is specified explicitly.

The explicitly specified row may be thought as a linear form:

x = a1xm+1 + a2xm+2 + . . .+ anxm+n, (1)

where x is an auxiliary variable for this row, aj are coefficients of the linear
form, xm+j are structural variables.

On entry column indices and numerical values of non-zero coefficients aj

of the transformed row should be placed in locations ind[1], . . . , ind[len]
and val[1], . . . , val[len], where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis
in order to express the auxiliary variable x in (1) through the current non-
basic variables (as if the transformed row were added to the problem object
and the auxiliary variable x were basic), i.e. the resultant row has the form:

x = α1(xN )1 + α2(xN )2 + . . .+ αn(xN )n, (2)

where αj are influence coefficients, (xN )j are non-basic (auxiliary and struc-
tural) variables, n is number of columns in the specified problem object.

102



On exit the routine stores indices and numerical values of non-zero co-
efficients αj of the resultant row (2) in locations ind[1], . . . , ind[len’]
and val[1], . . . , val[len’], where 0 ≤ len′ ≤ n is the number of non-zero
coefficients in the resultant row returned by the routine. Note that indices
of non-basic variables stored in the array ind correspond to original ordinal
numbers of variables: indices 1 to m mean auxiliary variables and indices
m+ 1 to m+ n mean structural ones.

Returns

The routine lpx_transform_row returns len’, the number of non-zero co-
efficients in the resultant row stored in the arrays ind and val.

4.1.16 Transform explicitly specified column

Synopsis

int lpx_transform_col(glp_prob *lp, int len, int ind[],
double val[]);

Description

The routine lpx_transform_col performs the same operation as the rou-
tine lpx_eval_tab_col, except that the transformed column is specified
explicitly.

The explicitly specified column may be thought as it were added to the
original system of equality constraints:

x1 = a11xm+1 + . . .+ a1nxm+n + a1x
x2 = a21xm+1 + . . .+ a2nxm+n + a2x

. . . . . . . . .
xm = am1xm+1 + . . .+ amnxm+n + amx

(1)

where xi are auxiliary variables, xm+j are structural variables (presented
in the problem object), x is a structural variable for the explicitly specified
column, ai are constraint coefficients for x.

On entry row indices and numerical values of non-zero coefficients ai of
the transformed column should be placed in locations ind[1], . . . , ind[len]
and val[1], . . . , val[len], where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis
in order to express the current basic variables through the structural variable
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x in (1) (as if the transformed column were added to the problem object
and the variable x were non-basic):

(xB)1 = . . .+ α1x
(xB)2 = . . .+ α2x

. . . . . . . . .
(xB)m = . . .+ αmx

(2)

where αi are influence coefficients, xB are basic (auxiliary and structural)
variables, m is number of rows in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coef-
ficients αi of the resultant column (2) in locations ind[1], . . . , ind[len’]
and val[1], . . . , val[len’], where 0 ≤ len′ ≤ m is the number of non-zero
coefficients in the resultant column returned by the routine. Note that in-
dices of basic variables stored in the array ind correspond to original ordinal
numbers of variables, i.e. indices 1 to m mean auxiliary variables, indices
m+ 1 to m+ n mean structural ones.

Returns

The routine lpx_transform_col returns len’, the number of non-zero co-
efficients in the resultant column stored in the arrays ind and val.

4.1.17 Perform primal ratio test

Synopsis

int lpx_prim_ratio_test(glp_prob *lp, int len, int ind[],
double val[], int how, double tol);

Description

The routine lpx_prim_ratio_test performs the primal ratio test for an
explicitly specified column of the simplex table.

The primal basic solution associated with an LP problem object, which
the parameter lp points to, should be feasible. No components of the LP
problem object are changed by the routine.

The explicitly specified column of the simplex table shows how the basic
variables xB depend on some non-basic variable y (which is not necessarily
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presented in the problem object):

(xB)1 = . . .+ α1y
(xB)2 = . . .+ α2y

. . . . . . . . .
(xB)m = . . .+ αmy

(1)

The column (1) is specifed on entry to the routine using the sparse for-
mat. Ordinal numbers of basic variables (xB)i should be placed in locations
ind[1], . . . , ind[len], where ordinal number 1 to m denote auxiliary vari-
ables, and ordinal numbers m+ 1 to m+n denote structural variables. The
corresponding non-zero coefficients αi should be placed in locations val[1],
. . . , val[len]. The arrays ind and val are not changed by the routine.

The parameter how specifies in which direction the variable y changes on
entering the basis: +1 means increasing, −1 means decreasing.

The parameter tol is a relative tolerance (small positive number) used
by the routine to skip small αi in the column (1).

The routine determines the ordinal number of a basic variable (among
specified in ind[1], . . . , ind[len]), which reaches its (lower or upper)
bound first before any other basic variables do and which therefore should
leave the basis instead the variable y in order to keep primal feasibility, and
returns it on exit. If the choice cannot be made (i.e. if the adjacent basic
solution is primal unbounded due to y), the routine returns zero.

Note

If the non-basic variable y is presented in the LP problem object, the column
(1) can be computed using the routine lpx_eval_tab_col. Otherwise it can
be computed using the routine lpx_transform_col.

Returns

The routine lpx_prim_ratio_test returns the ordinal number of some basic
variable (xB)i, which should leave the basis instead the variable y in order
to keep primal feasibility. If the adjacent basic solution is primal unbounded
and therefore the choice cannot be made, the routine returns zero.
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4.1.18 Perform dual ratio test

Synopsis

int lpx_dual_ratio_test(glp_prob *lp, int len, int ind[],
double val[], int how, double tol);

Description

The routine lpx_dual_ratio_test performs the dual ratio test for an ex-
plicitly specified row of the simplex table.

The dual basic solution associated with an LP problem object, which
the parameter lp points to, should be feasible. No components of the LP
problem object are changed by the routine.

The explicitly specified row of the simplex table is a linear form, which
shows how some basic variable y (not necessarily presented in the problem
object) depends on non-basic variables xN :

y = α1(xN )1 + α2(xN )2 + . . .+ αn(xN )n. (1)

The linear form (1) is specified on entry to the routine using the sparse
format. Ordinal numbers of non-basic variables (xN )j should be placed
in locations ind[1], . . . , ind[len], where ordinal numbers 1 to m denote
auxiliary variables, and ordinal numbers m + 1 to m + n denote structural
variables. The corresponding non-zero coefficients αj should be placed in
locations val[1], . . . , val[len]. The arrays ind and val are not changed
by the routine.

The parameter how specifies in which direction the variable y changes on
leaving the basis: +1 means increasing, −1 means decreasing.

The parameter tol is a relative tolerance (small positive number) used
by the routine to skip small αj in the form (1).

The routine determines the ordinal number of some non-basic variable
(among specified in ind[1], . . . , ind[len]), whose reduced cost reaches its
(zero) bound first before this happens for any other non-basic variables and
which therefore should enter the basis instead the variable y in order to keep
dual feasibility, and returns it on exit. If the choice cannot be made (i.e. if
the adjacent basic solution is dual unbounded due to y), the routine returns
zero.

Note

If the basic variable y is presented in the LP problem object, the row (1)
can be computed using the routine lpx_eval_tab_row. Otherwise it can be
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computed using the routine lpx_transform_row.

Returns

The routine lpx_dual_ratio_test returns the ordinal number of some non-
basic variable (xN )j , which should enter the basis instead the variable y in
order to keep dual feasibility. If the adjacent basic solution is dual un-
bounded and therefore the choice cannot be made, the routine returns zero.
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4.2 Branch-and-cut interface routines

4.2.1 Introduction

The GLPK MIP solver based on the branch-and-cut method allows the
application to control the solution process. This is attained by means of the
user-defined callback routine, which is called by the solver at various points
of the branch-and-cut algorithm.

The callback routine passed to the MIP solver should be written by the
user and has the following specification:13

void foo_bar(glp_tree *tree, void *info);

where tree is a pointer to the data structure glp_tree, which should be
used on subsequent calls to branch-and-cut interface routines, and info is
a transit pointer passed to the routine glp_intopt, which may be used by
the application program to pass some external data to the callback routine.

The callback routine is passed to the MIP solver through the control
parameter structure glp_iocp (see Chapter “GLPK API Routines”, Section
“Solve MIP problem with B&B method”) as follows:

glp_prob *mip;
glp_iocp parm;
. . .
glp_init_iocp(&parm);
. . .
parm.cb_func = foo_bar;
parm.cb_info = ... ;
ret = glp_intopt(mip, &parm);
. . .

To determine why it is being called by the MIP solver the callback routine
should use the routine glp_ios_reason (described in this section below),
which returns a code indicating the reason for calling. Depending on the
reason the callback routine may perform necessary actions to control the
solution process.

The reason codes, which correspond to various point of the branch-and-
cut algorithm implemented in the MIP solver, are described in comments to
the routine glp_ios_reason.

13The name foo bar used here is a placeholder for the callback routine name.
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To ignore calls for reasons, which are not processed by the callback rou-
tine, it should just return to the MIP solver doing nothing. For example:

void foo_bar(glp_tree *tree, void *info)
{ . . .

switch (glp_ios_reason(tree))
{ case GLP_IBRANCH:

. . .
break;

case GLP_ISELECT:
. . .
break;

default:
/* ignore call for other reasons */
break;

}
return;

}

To control the solution process as well as to obtain necessary information
the callback routine may use branch-and-cut interface routines described in
this section. Names of all these routines begin with ‘glp_ios_’.

4.2.2 Branch-and-cut algorithm

This subsection contains a schematic description of the branch-and-cut al-
gorithm as it is implemented in the GLPK MIP solver.

1. Initialization
Set L := {P0}, where L is the active list (i.e. the list of active subprob-

lems), P0 is the original MIP problem to be solved.
Set z := +∞ (in case of minimization) or z := −∞ (in case of maxi-

mization), where z is incumbent value, i.e. an upper (minimization) or lower
(maximization) global bound for z∗, the optimal objective value for P 0.

2. Subproblem selection
If L = ∅ then GO TO 9.
Select P ∈ L, i.e. make active subproblem P current.

3. Solving LP relaxation
Solve PLP , which is LP relaxation of P .
If PLP has no primal feasible solution then GO TO 8.
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Let z∗LP be the optimal objective value for PLP .
If z∗LP ≥ z (in case of minimization) or z∗LP ≤ z (in case of maximization)

then GO TO 8.

4. Adding “lazy” constraints
Let x∗LP be the optimal solution to PLP .
If there are “lazy” constraints (i.e. essential constraints not included in

the original MIP problem P0), which are violated at the optimal point x∗LP ,
add them to P , and GO TO 3.

5. Check for integrality
Let xj be a variable, which is required to be integer, and let x∗j ∈ x∗LP

be its value in the optimal solution to PLP .
If x∗j is integral for all integer variables, then a better integer feasible

solution is found. Store its components, set z := z∗LP , and GO TO 8.

6. Adding cutting planes
If there are cutting planes (i.e. valid constraints for P ), which are vio-

lated at the optimal point x∗LP , add them to P , and GO TO 3.

7. Branching
Select branching variable xj , i.e. a variable, which is required to be

integer, and whose value x∗j ∈ x∗LP is fractional in the optimal solution to
PLP .

Create new subproblem PD (so called down branch), which is identical
to the current subproblem P with exception that the upper bound of xj is
replaced by bx∗jc. (For example, if x∗j = 3.14, the new upper bound of xj in
the down branch will be b3.14c = 3.)

Create new subproblem PU (so called up branch), which is identical to
the current subproblem P with exception that the lower bound of xj is
replaced by dx∗je. (For example, if x∗j = 3.14, the new lower bound of xj in
the up branch will be d3.14e = 4.)

Set L := L\{P}∪{PD, PU}, i.e. remove the current subproblem P from
the active list and add two new subproblems PD and PU to the active list.
Then GO TO 2.

8. Pruning
Remove from the active list L all subproblems (including the current

one), whose local bound z̃ is not better than the global bound z, i.e. set
L := L\{P} for all P , where z̃ ≥ z (in case of minimization) or z̃ ≤ z (in
case of maximization), and then GO TO 2.

The local bound z̃ for subproblem P is an lower (minimization) or upper
(maximization) bound for integer optimal solution to this subproblem (not to
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the original problem). This bound is local in the sense that only subproblems
in the subtree rooted at node P cannot have better integer feasible solutions.
Note that the local bound is not necessarily the optimal objective value to
LP relaxation PLP .

9. Termination
If z = +∞ (in case of minimization) or z = −∞ (in case of maximiza-

tion), the original problem P0 has no integer feasible solution. Otherwise,
the last integer feasible solution stored on step 5 is the integer optimal so-
lution to the original problem P0. STOP.

4.2.3 Determine reason for calling the callback routine

Synopsis

int glp_ios_reason(glp_tree *tree);

Returns

The routine glp_ios_reason returns a code, which indicates why the user-
defined callback routine is being called:

GLP_ISELECT — request for subproblem selection;
GLP_IPREPRO — request for preprocessing;
GLP_IROWGEN — request for row generation;
GLP_IHEUR — request for heuristic solution;
GLP_ICUTGEN — request for cut generation;
GLP_IBRANCH — request for branching;
GLP_IBINGO — better integer solution found.

Request for subproblem selection

The callback routine is called with the reason code GLP_ISELECT if the cur-
rent subproblem has been fathomed and therefore there is no current sub-
problem.

In response the callback routine may select some subproblem from the
active list and pass its reference number to the solver using the routine
glp_ios_select_node, in which case the solver will continue the search
from the specified active subproblem. If no selection is made by the callback
routine, the solver uses a backtracking technique specified by the control
parameter bt_tech.
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To explore the active list (i.e. active nodes of the branch-and-bound
tree) the callback routine may use the routines glp_ios_next_node and
glp_ios_prev_node.

Request for preprocessing

The callback routine is called with the reason code GLP_IPREPRO if the cur-
rent subproblem has just been selected from the active list and its LP re-
laxation is not solved yet.

In response the callback routine may perform some preprocessing of the
current subproblem like tightening bounds of some variables or removing
bounds of some redundant constraints.

Request for row generation

The callback routine is called with the reason code GLP_IROWGEN if LP re-
laxation of the current subproblem has just been solved to optimality and
its objective value is better than the best known integer feasible solution.

In response the callback routine may add one or more “lazy” constraints
(rows), which are violated by the current optimal solution of LP relaxation,
using API routines glp_add_rows, glp_set_row_name, glp_set_row_bnds,
and glp_set_mat_row, in which case the solver will perform re-optimization
of LP relaxation. If there are no violated constraints, the callback routine
should just return.

Optimal solution components for LP relaxation can be obtained with
API routines glp_get_obj_val, glp_get_row_prim, glp_get_row_dual,
glp_get_col_prim, and glp_get_col_dual.

Request for heuristic solution

The callback routine is called with the reason code GLP_IHEUR if LP relax-
ation of the current subproblem being solved to optimality is integer infea-
sible (i.e. values of some structural variables of integer kind are fractional),
though its objective value is better than the best known integer feasible
solution.

In response the callback routine may try applying a primal heuristic to
find an integer feasible solution,14 which is better than the best known one.
In case of success the callback routine may store such better solution in the
problem object using the routine glp_ios_heur_sol.

14Integer feasible to the original MIP problem, not to the current subproblem.
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Request for cut generation

The callback routine is called with the reason code GLP_ICUTGEN if LP re-
laxation of the current subproblem being solved to optimality is integer
infeasible (i.e. values of some structural variables of integer kind are frac-
tional), though its objective value is better than the best known integer
feasible solution.

In response the callback routine may reformulate the current subproblem
(before it will be splitted up due to branching) by adding to the problem
object one or more constraints (cutting planes), which cut off the fractional
optimal point from the MIP polytope.15

Adding cutting plane constraints is performed in the same way as adding
“lazy” constraints for the reason code GLP_IROWGEN (see above).

Request for branching

The callback routine is called with the reason code GLP_IBRANCH if LP re-
laxation of the current subproblem being solved to optimality is integer
infeasible (i.e. values of some structural variables of integer kind are frac-
tional), though its objective value is better than the best known integer
feasible solution.

In response the callback routine may choose some variable suitable for
branching (i.e. integer variable, whose value in optimal solution to LP relax-
ation of the current subproblem is fractional) and pass its ordinal number
to the solver using the routine glp_ios_branch_upon, in which case the
solver splits the current subproblem in two new subproblems and continues
the search. If no choice is made by the callback routine, the solver uses a
branching technique specified by the control parameter br_tech.

Better integer solution found

The callback routine is called with the reason code GLP_IBINGO if LP relax-
ation of the current subproblem being solved to optimality is integer feasible
(i.e. values of all structural variables of integer kind are integral within the
working precision) and its objective value is better than the best known
integer feasible solution.

Optimal solution components for LP relaxation can be obtained in the
same way as for the reason code GLP_IROWGEN (see above).

15Since these constraints are added to the current subproblem, they may be globally as
well as locally valid.
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Components of the new MIP solution can be obtained with API routines
glp_mip_obj_val, glp_mip_row_val, and glp_mip_col_val. Note, how-
ever, that due to row/cut generation there may be additional rows in the
problem object.

The difference between optimal solution to LP relaxation and corre-
sponding MIP solution is that in the former case some structural variables
of integer kind (namely, basic variables) may have values, which are close
to nearest integers within the working precision, while in the latter case all
such variables have exact integral values.

The reason GLP_IBINGO is intended only for informational purposes, so
the callback routine should not modify the problem object in this case.

4.2.4 Access the problem object

Synopsis

glp_prob *glp_ios_get_prob(glp_tree *tree);

Description

The routine glp_ios_get_prob can be called from the user-defined callback
routine to access the problem object, which is used by the MIP solver. It
is the original problem object passed to the routine glp_intopt if the MIP
presolver is not used; otherwise it is an internal problem object built by the
presolver.

Returns

The routine glp_ios_get_prob returns a pointer to the problem object used
by the MIP solver.

Comments

To obtain various information about the problem instance the callback rou-
tine can access the problem object (i.e. the object of type glp_prob) using
the routine glp_ios_get_prob. It is the original problem object passed to
the routine glp_intopt if the MIP presolver is not used; otherwise it is an
internal problem object built by the presolver.16

Should note that the problem object is used by the MIP solver during
the solution process for various purposes (to solve LP relaxations, perform

16Currently the latter feature is not implemented.
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branching, etc.), so it may differ from the original problem instance, for
example, it may have additional rows, bounds of some variables may be
changed, etc. In particular, if the current subproblem exists, LP segment of
the problem object corresponds to its LP relaxation. However, on exit from
the solver the problem object is restored to its original state.

To obtain information from the problem object the callback routine may
use any API routines, which do not change the object. However, using API
routines, which change the problem object, is restricted to stipulated cases.

4.2.5 Determine size of the branch-and-bound tree

Synopsis

void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt,
int *t_cnt);

Description

The routine glp_ios_tree_size stores the following three counts which
characterize the current size of the branch-and-bound tree:

a_cnt is the current number of active nodes, i.e. the current size of the
active list;

n_cnt is the current number of all (active and inactive) nodes;
t_cnt is the total number of nodes including those which have been

already removed from the tree. This count is increased whenever a new
node appears in the tree and never decreased.

If some of the parameters a_cnt, n_cnt, t_cnt is a null pointer, the
corresponding count is not stored.

4.2.6 Determine current active subproblem

Synopsis

int glp_ios_curr_node(glp_tree *tree);

Returns

The routine glp_ios_curr_node returns the reference number of the current
active subproblem. However, if the current subproblem does not exist, the
routine returns zero.
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4.2.7 Determine next active subproblem

Synopsis

int glp_ios_next_node(glp_tree *tree, int p);

Returns

If the parameter p is zero, the routine glp_ios_next_node returns the ref-
erence number of the first active subproblem. However, if the tree is empty,
zero is returned.

If the parameter p is not zero, it must specify the reference number of
some active subproblem, in which case the routine returns the reference
number of the next active subproblem. However, if there is no next active
subproblem in the list, zero is returned.

All subproblems in the active list are ordered chronologically, i.e. sub-
problem A precedes subproblem B if A was created before B.

4.2.8 Determine previous active subproblem

Synopsis

int glp_ios_prev_node(glp_tree *tree, int p);

Returns

If the parameter p is zero, the routine glp_ios_prev_node returns the ref-
erence number of the last active subproblem. However, if the tree is empty,
zero is returned.

If the parameter p is not zero, it must specify the reference number of
some active subproblem, in which case the routine returns the reference
number of the previous active subproblem. However, if there is no previous
active subproblem in the list, zero is returned.

All subproblems in the active list are ordered chronologically, i.e. sub-
problem A precedes subproblem B if A was created before B.
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4.2.9 Determine parent subproblem

Synopsis

int glp_ios_up_node(glp_tree *tree, int p);

Returns

The parameter p must specify the reference number of some (active or inac-
tive) subproblem, in which case the routine iet_get_up_node returns the
reference number of its parent subproblem. However, if the specified sub-
problem is the root of the tree and, therefore, has no parent, the routine
returns zero.

4.2.10 Determine subproblem level

Synopsis

int glp_ios_node_level(glp_tree *tree, int p);

Returns

The routine glp_ios_node_level returns the level of the subproblem,
whose reference number is p, in the branch-and-bound tree. (The root sub-
problem has level 0, and the level of any other subproblem is the level of its
parent plus one.)

4.2.11 Determine subproblem local bound

Synopsis

double glp_ios_node_bound(glp_tree *tree, int p);

Returns

The routine glp_ios_node_bound returns the local bound for (active or
inactive) subproblem, whose reference number is p.

Comments

The local bound for subproblem p is an lower (minimization) or upper (max-
imization) bound for integer optimal solution to this subproblem (not to the
original problem). This bound is local in the sense that only subproblems in
the subtree rooted at node p cannot have better integer feasible solutions.
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On creating a subproblem (due to the branching step) its local bound
is inherited from its parent and then may get only stronger (never weaker).
For the root subproblem its local bound is initially set to -DBL_MAX (min-
imization) or +DBL_MAX (maximization) and then improved as the root LP
relaxation has been solved.

Note that the local bound is not necessarily the optimal objective value
to corresponding LP relaxation.

4.2.12 Find active subproblem with best local bound

Synopsis

int glp_ios_best_node(glp_tree *tree);

Returns

The routine glp_ios_best_node returns the reference number of the active
subproblem, whose local bound is best (i.e. smallest in case of minimization
or largest in case of maximization). However, if the tree is empty, the routine
returns zero.

Comments

The best local bound is an lower (minimization) or upper (maximization)
bound for integer optimal solution to the original MIP problem.

4.2.13 Compute relative MIP gap

Synopsis

double glp_ios_mip_gap(glp_tree *tree);

Description

The routine glp_ios_mip_gap computes the relative MIP gap (also called
duality gap) with the following formula:

gap =
|best mip− best bnd|
|best mip|+ DBL EPSILON

where best_mip is the best integer feasible solution found so far, best_bnd
is the best (global) bound. If no integer feasible solution has been found
yet, gap is set to DBL_MAX.
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Returns

The routine glp_ios_mip_gap returns the relative MIP gap.

Comments

The relative MIP gap is used to measure the quality of the best integer
feasible solution found so far, because the optimal solution value z∗ for the
original MIP problem always lies in the range

best bnd ≤ z∗ ≤ best mip

in case of minimization, or in the range

best mip ≤ z∗ ≤ best bnd

in case of maximization.
To express the relative MIP gap in percents the value returned by the

routine glp_ios_mip_gap should be multiplied by 100%.

4.2.14 Access subproblem application-specific data

Synopsis

void *glp_ios_node_data(glp_tree *tree, int p);

Description

The routine glp_ios_node_data allows the application accessing a memory
block allocated for the subproblem (which may be active or inactive), whose
reference number is p.

The size of the block is defined by the control parameter cb_size passed
to the routine glp_intopt. The block is initialized by binary zeros on creat-
ing corresponding subproblem, and its contents is kept until the subproblem
will be removed from the tree.

The application may use these memory blocks to store specific data for
each subproblem.

Returns

The routine glp_ios_node_data returns a pointer to the memory block for
the specified subproblem. Note that if cb_size = 0, the routine returns a
null pointer.
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4.2.15 Select subproblem to continue the search

Synopsis

void glp_ios_select_node(glp_tree *tree, int p);

Description

The routine glp_ios_select_node can be called from the user-defined call-
back routine in response to the reason GLP_ISELECT to select an active sub-
problem, whose reference number is p. The search will be continued from
the subproblem selected.

4.2.16 Provide solution found by heuristic

Synopsis

int glp_ios_heur_sol(glp_tree *tree, const double x[]);

Description

The routine glp_ios_heur_sol can be called from the user-defined callback
routine in response to the reason GLP_IHEUR to provide an integer feasible
solution found by a primal heuristic.

Primal values of all variables (columns) found by the heuristic should be
placed in locations x[1], . . . , x[n], where n is the number of columns in the
original problem object. Note that the routine glp_ios_heur_sol does not
check primal feasibility of the solution provided.

Using the solution passed in the array x the routine computes value of
the objective function. If the objective value is better than the best known
integer feasible solution, the routine computes values of auxiliary variables
(rows) and stores all solution components in the problem object.

Returns

If the provided solution is accepted, the routine glp_ios_heur_sol returns
zero. Otherwise, if the provided solution is rejected, the routine returns
non-zero.

120



4.2.17 Check if can branch upon specified variable

Synopsis

int glp_ios_can_branch(glp_tree *tree, int j);

Returns

If j-th variable (column) can be used to branch upon, the routine returns
non-zero, otherwise zero.

4.2.18 Choose variable to branch upon

Synopsis

void glp_ios_branch_upon(glp_tree *tree, int j, int sel);

Description

The routine glp_ios_branch_upon can be called from the user-defined call-
back routine in response to the reason GLP_IBRANCH to choose a branching
variable, whose ordinal number is j. Should note that only variables, for
which the routine glp_ios_can_branch returns non-zero, can be used to
branch upon.

The parameter sel is a flag that indicates which branch (subproblem)
should be selected next to continue the search:

’D’ — down branch;
’U’ — up branch;
’N’ — none of them.

Comments

On branching the solver removes the current active subproblem from the
active list and creates two new subproblems (down- and up-branches), which
are added to the end of the active list. Note that the down-branch is created
before the up-branch, so the last active subproblem will be the up-branch.

The down- and up-branches are identical to the current subproblem with
exception that in the down-branch the upper bound of xj , the variable
chosen to branch upon, is replaced by bx∗jc, while in the up-branch the
lower bound of xj is replaced by dx∗je, where x∗j is the value of xj in optimal
solution to LP relaxation of the current subproblem. For example, if x∗j =
3.14, the new upper bound of xj in the down-branch will be b3.14c = 3, and
the new lower bound in the up-branch will be d3.14e = 4.)
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Additionally the callback routine may select either down- or up-branch,
from which the solver will continue the search. If none of the branches is
selected, a general selection technique will be used.

4.2.19 Terminate the solution process

Synopsis

void glp_ios_terminate(glp_tree *tree);

Description

The routine glp_ios_terminate sets a flag indicating that the MIP solver
should prematurely terminate the search.
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4.3 Library environment routines

4.3.1 64-bit integer data type

Some GLPK API routines use 64-bit integer data type, which is declared in
the header glpk.h as follows:

typedef struct { int lo, hi; } glp_long;

where lo contains low 32 bits, and hi contains high 32 bits of 64-bit integer
value.17

4.3.2 Determine library version

Synopsis

const char *glp_version(void);

Returns

The routine glp_version returns a pointer to a null-terminated character
string, which specifies the version of the GLPK library in the form "X.Y",
where ‘X’ is the major version number, and ‘Y’ is the minor version number,
for example, "4.16".

Example

printf("GLPK version is %s\n", glp_version());

4.3.3 Enable/disable terminal output

Synopsis

void glp_term_out(int flag);

Description

Depending on the parameter flag the routine glp_term_out enables or dis-
ables terminal output performed by glpk routines:

GLP_ON — enable terminal output;
GLP_OFF — disable terminal output.

17GLPK conforms to ILP32, LLP64, and LP64 programming models, where the built-in
type int corresponds to 32-bit integers.
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4.3.4 Install hook to intercept terminal output

Synopsis

void glp_term_hook(int (*func)(void *info, const char *s),
void *info);

Description

The routine glp_term_hook installs the user-defined hook routine to inter-
cept all terminal output performed by GLPK routines.

The parameter func specifies the user-defined hook routine. It is called
from an internal printing routine, which passes to it two parameters: info
and s. The parameter info is a transit pointer specified in corresponding
call to the routine glp_term_hook; it may be used to pass some additional
information to the hook routine. The parameter s is a pointer to the null
terminated character string, which is intended to be written to the terminal.
If the hook routine returns zero, the printing routine writes the string s to
the terminal in a usual way; otherwise, if the hook routine returns non-zero,
no terminal output is performed.

To uninstall the hook routine both parameters func and info should be
specified as NULL.

Example

static int hook(void *info, const char *s)
{ FILE *foo = info;

fputs(s, foo);
return 1;

}

int main(void)
{ FILE *foo;

. . .
/* redirect terminal output */
glp_term_hook(hook, foo);
. . .
/* resume terminal output */
glp_term_hook(NULL, NULL);
. . .

}
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4.3.5 Get memory usage information

Synopsis

void glp_mem_usage(int *count, int *cpeak, glp_long *total,
glp_long *tpeak);

Description

The routine glp_mem_usage reports some information about utilization of
the memory by GLPK routines. Information is stored to locations specified
by corresponding parameters (see below). Any parameter can be specified
as NULL, in which case corresponding information is not stored.

*count is the number of currently allocated memory blocks.
*cpeak is the peak value of *count reached since the initialization of the

GLPK library environment.
*total is the total amount, in bytes, of currently allocated memory

blocks.
*tpeak is the peak value of *total reached since the initialization of the

GLPK library envirionment.

Example

glp_mem_usage(&count, NULL, NULL, NULL);
printf("%d memory block(s) are still allocated\n", count);

4.3.6 Set memory usage limit

Synopsis

void glp_mem_limit(int limit);

Description

The routine glp_mem_limit limits the amount of memory available for dy-
namic allocation (in GLPK routines) to limit megabytes.
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4.3.7 Free GLPK library environment

Synopsis

void glp_free_env(void);

Description

The routine glp_free_env frees all resources used by GLPK routines (mem-
ory blocks, etc.) which are currently still in use.

Usage notes

Normally the application program does not need to call this routine, because
GLPK routines always free all unused resources. However, if the application
program even has deleted all problem objects, there will be several memory
blocks still allocated for the internal library needs. For some reasons the
application program may want GLPK to free this memory, in which case it
should call glp_free_env.

Note that a call to glp_free_env invalidates all problem objects which
still exist.
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Appendix A

Installing GLPK on Your
Computer

A.1 Obtaining GLPK distribution file

The distrubution file for the most recent version of the GLPK package can be
downloaded from <ftp://ftp.gnu.org/gnu/glpk/> or from some mirror
GNU ftp sites; for details see <http://www.gnu.org/order/ftp.html>.

A.2 Unpacking the distribution file

The GLPK package (like all other GNU software) is distributed in the form
of packed archive. This is one file named glpk-x.y.tar.gz, where x is the
major version number and y is the minor version number.

In order to prepare the distribution for installation you should:
1. Copy the GLPK distribution file to some subdirectory.
2. Enter the command gzip -d glpk-x.y.tar.gz in order to unpack

the distribution file. After unpacking the name of the distribution file will
be automatically changed to glpk-x.y.tar.

3. Enter the command tar -x < glpk-x.y.tar in order to unarchive
the distribution. After this operation the subdirectory glpk-x.y, which is
the GLPK distribution, will be automatically created.

A.3 Configuring the package

After you have unpacked and unarchived GLPK distribution you should con-
figure the package, i.e. automatically tune it for your computer (platform).
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Normally, you should just cd to the subdirectory glpk-x.y and enter the
command ./configure. If you are using csh on an old version of System V,
you might need to type sh configure instead to prevent csh from trying
execute configure itself.

The configure shell script attempts to guess correct values for various
system-dependent variables used during compilation, and creates Makefile.
It also creates a file config.status that you can run in the future to recreate
the current configuration.

Running configure takes about a few minutes. While it is running, it
displays some informational messages that tell you what it is doing. If you
don’t want to see these messages, run configure with its standard output
redirected to dev/null; for example, ./configure >/dev/null.

A.4 Compiling and checking the package

Normally, in order to compile the package you should just enter the com-
mand make. This command reads Makefile generated by configure and
automatically performs all necessary job.

The result of compilation is:
• the file libglpk.a, which is a library archive that contains object code

for all GLPK routines; and
• the program glpsol, which is a stand-alone LP/MIP solver.
If you want, you can override the make variables CFLAGS and LDFLAGS

like this:
make CFLAGS=-O2 LDFLAGS=-s
To compile the package in a different directory from the one containing

the source code, you must use a version of make that supports VPATH variable,
such as GNU make. cd to the directory where you want the object files and
executables to go and run the configure script. configure automatically
checks for the source code in the directory that configure is in and in ‘..’.
If for some reason configure is not in the source code directory that you
are configuring, then it will report that it can’t find the source code. In
that case, run configure with the option --srcdir=DIR, where DIR is the
directory that contains the source code.

On systems that require unusual options for compilation or linking the
package’s configure script does not know about, you can give configure
initial values for variables by setting them in the environment. In Bourne-
compatible shells you can do that on the command line like this:

CC=’gcc -traditional’ LIBS=-lposix ./configure
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Here are the make variables that you might want to override with envi-
ronment variables when running configure.

For these variables, any value given in the environment overrides the
value that configure would choose:
• variable CC: C compiler program. The default is cc.
• variable INSTALL: program to use to install files. The default value is

install if you have it, otherwise cp.
For these variables, any value given in the environment is added to the

value that configure chooses:
• variable DEFS: configuration options, in the form ‘-Dfoo -Dbar . . . ’.
• variable LIBS: libraries to link with, in the form ‘-lfoo -lbar . . . ’.
In order to check the package (running some tests included in the distri-

bution) you can just enter the command make check.

A.5 Installing the package

Normally, in order to install the GLPK package (i.e. copy GLPK library,
header files, and the solver to the system places) you should just enter
the command make install (note that you should be the root user or a
superuser).

By default, make install will install the package’s files in the sub-
directories usr/local/bin, usr/local/lib, etc. You can specify an in-
stallation prefix other than /usr/local by giving configure the option
--prefix=PATH. Alternately, you can do so by consistently giving a value
for the prefix variable when you run make, e.g.

make prefix=/usr/gnu
make prefix=/usr/gnu install
After installing you can remove the program binaries and object files

from the source directory by typing make clean. To remove all files that
configure created (Makefile, config.status, etc.), just type the com-
mand make distclean.

The file configure.in is used to create configure by a program called
autoconf. You only need it if you want to remake configure using a newer
version of autoconf.

A.6 Uninstalling the package

In order to uninstall the GLPK package (i.e. delete all GLPK files from the
system places) you can enter the command make uninstall.
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Appendix B

MPS Format

B.1 Fixed MPS Format

The MPS format1 is intended for coding LP/MIP problem data. This format
assumes the formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1,
page 9).

MPS file is a text file, which contains two types of cards2: indicator cards
and data cards.

Indicator cards determine a kind of succeeding data. Each indicator card
has one word in uppercase letters beginning in column 1.

Data cards contain problem data. Each data card is divided into six
fixed fields:

Field 1 Field 2 Field 3 Field 4 Field 5 Feld 6
Columns 2—3 5—12 15—22 25—36 40—47 50—61
Contents Code Name Name Number Name Number

On a particular data card some fields may be optional.
Names are used to identify rows, columns, and some vectors (see below).
Aligning the indicator code in the field 1 to the left margin is optional.
All names specified in the fields 2, 3, and 5 should contain from 1 up to

8 arbitrary characters (except control characters). If a name is placed in the
1The MPS format was developed in 1960’s by IBM as input format for their mathemat-

ical programming system MPS/360. Today the MPS format is a most widely used format
understood by most mathematical programming packages. This appendix describes only
the features of the MPS format, which are implemented in the GLPK package.

2In 1960’s MPS file was a deck of 80-column punched cards, so the author decided to
keep the word “card”, which may be understood as “line of text file”.
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field 3 or 5, its first character should not be the dollar sign ‘$’. If a name
contains spaces, the spaces are ignored.

All numerical values in the fields 4 and 6 should be coded in the form
sxxEsyy, where s is the plus ‘+’ or the minus ‘-’ sign, xx is a real number
with optional decimal point, yy is an integer decimal exponent. Any number
should contain up to 12 characters. If the sign s is omitted, the plus sign is
assumed. The exponent part is optional. If a number contains spaces, the
spaces are ignored.

If a card has the asterisk ‘*’ in the column 1, this card is considered as
a comment and ignored. Besides, if the first character in the field 3 or 5 is
the dollar sign ‘$’, all characters from the dollar sign to the end of card are
considered as a comment and ignored.

MPS file should contain cards in the following order:
• NAME indicator card;
• ROWS indicator card;
• data cards specifying rows (constraints);
• COLUMNS indicator card;
• data cards specifying columns (structural variables) and constraint

coefficients;
• RHS indicator card;
• data cards specifying right-hand sides of constraints;
• RANGES indicator card;
• data cards specifying ranges for double-bounded constraints;
• BOUNDS indicator card;
• data cards specifying types and bounds of structural variables;
• ENDATA indicator card.
Section is a group of cards consisting of an indicator card and data cards

succeeding this indicator card. For example, the ROWS section consists of
the ROWS indicator card and data cards specifying rows.

The sections RHS, RANGES, and BOUNDS are optional and may be
omitted.

B.2 Free MPS Format

Free MPS format is an improved version of the standard (fixed) MPS format
described above.3 Note that all changes in free MPS format concern only

3This format was developed in the beginning of 1990’s by IBM as an alternative to the
standard fixed MPS format for Optimization Subroutine Library (OSL).
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the coding of data while the structure of data is the same for both fixed and
free versions of the MPS format.

In free MPS format indicator and data records4 may have arbitrary
length not limited to 80 characters. Fields of data records have no pre-
defined positions, i.e. the fields may begin in any position, except position
1, which must be blank, and must be separated from each other by one or
more blanks. However, the fields must appear in the same order as in fixed
MPS format.

Symbolic names in fields 2, 3, and 5 may be longer than 8 characters5

and must not contain embedded blanks.
Numeric values in fields 4 and 6 are limited to 12 characters and must

not contain embedded blanks.
Only six fields on each data record are used. Any other fields are ignored.
If the first character of any field (not necessarily fields 3 and 5) is the

dollar sign ($), all characters from the dollar sign to the end of record are
considered as a comment and ignored.

B.3 NAME indicator card

The NAME indicator card should be the first card in the MPS file (except
optional comment cards, which may precede the NAME card). This card
should contain the word NAME in the columns 1—4 and the problem name
in the field 3. The problem name is optional and may be omitted.

B.4 ROWS section

The ROWS section should start with the indicator card, which contains the
word ROWS in the columns 1—4.

Each data card in the ROWS section specifies one row (constraint) of
the problem. All these data cards have the following format.

‘N’ in the field 1 means that the row is free (unbounded):

−∞ < xi = ai1xm+1 + ai2xm+2 + . . .+ ainxm+n < +∞;

‘L’ in the field 1 means that the row is of “less than or equal to” type:

−∞ < xi = ai1xm+1 + ai2xm+2 + . . .+ ainxm+n ≤ bi;
4Record in free MPS format has the same meaning as card in fixed MPS format.
5GLPK allows symbolic names having up to 255 characters.
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‘G’ in the field 1 means that the row is of “greater than or equal to” type:

bi ≤ xi = ai1xm+1 + ai2xm+2 + . . .+ ainxm+n < +∞;

‘E’ in the field 1 means that the row is of “equal to” type:

xi = ai1xm+1 + ai2xm+2 + . . .+ ainxm+n ≤ bi,

where bi is a right-hand side. Note that each constraint has a corresponding
implictly defined auxiliary variable (xi above), whose value is a value of
the corresponding linear form, therefore row bounds can be considered as
bounds of such auxiliary variable.

The filed 2 specifies a row name (which is considered as the name of the
corresponding auxiliary variable).

The fields 3, 4, 5, and 6 are not used and should be empty.
Numerical values of all non-zero right-hand sides bi should be specified

in the RHS section (see below). All double-bounded (ranged) constraints
should be specified in the RANGES section (see below).

B.5 COLUMNS section

The COLUMNS section should start with the indicator card, which contains
the word COLUMNS in the columns 1—7.

Each data card in the COLUMNS section specifies one or two constraint
coefficients aij and also introduces names of columns, i.e. names of structural
variables. All these data cards have the following format.

The field 1 is not used and should be empty.
The field 2 specifies a column name. If this field is empty, the column

name from the immediately preceeding data card is assumed.
The field 3 specifies a row name defined in the ROWS section.
The field 4 specifies a numerical value of the constraint coefficient aij ,

which is placed in the corresponding row and column.
The fields 5 and 6 are optional. If they are used, they should contain a

second pair “row name—constraint coefficient” for the same column.
Elements of the constraint matrix (i.e. constraint coefficients) should be

enumerated in the column wise manner: all elements for the current column
should be specified before elements for the next column. However, the order
of rows in the COLUMNS section may differ from the order of rows in the
ROWS section.

Constraint coefficients not specified in the COLUMNS section are con-
sidered as zeros. Therefore zero coefficients may be omitted, although it is
allowed to explicitly specify them.
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B.6 RHS section

The RHS section should start with the indicator card, which contains the
word RHS in the columns 1—3.

Each data card in the RHS section specifies one or two right-hand sides bi
(see Section B.4, page 132). All these data cards have the following format.

The field 1 is not used and should be empty.
The field 2 specifies a name of the right-hand side (RHS) vector6. If this

field is empty, the RHS vector name from the immediately preceeding data
card is assumed.

The field 3 specifies a row name defined in the ROWS section.
The field 4 specifies a right-hand side bi for the row, whose name is

specified in the field 3. Depending on the row type bi is a lower bound (for
the row of G type), an upper bound (for the row of L type), or a fixed value
(for the row of E type).7

The fields 5 and 6 are optional. If they are used, they should contain a
second pair “row name—right-hand side” for the same RHS vector.

All right-hand sides for the current RHS vector should be specified before
right-hand sides for the next RHS vector. However, the order of rows in the
RHS section may differ from the order of rows in the ROWS section.

Right-hand sides not specified in the RHS section are considered as zeros.
Therefore zero right-hand sides may be omitted, although it is allowed to
explicitly specify them.

B.7 RANGES section

The RANGES section should start with the indicator card, which contains
the word RANGES in the columns 1—6.

Each data card in the RANGES section specifies one or two ranges for
double-side constraints, i.e. for constraints that are of the types L and G at
the same time:

li ≤ xi = ai1xm+1 + ai2xm+2 + . . .+ ainxm+n ≤ ui,

where li is a lower bound, ui is an upper bound. All these data cards have
the following format.

6This feature allows the user to specify several RHS vectors in the same MPS file.
However, before solving the problem a particular RHS vector should be chosen.

7If the row is of N type, bi is considered as a constant term of the corresponding linear
form. Should note, however, this convention is non-standard.
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The field 1 is not used and should be empty.
The field 2 specifies a name of the range vector8. If this field is empty, the

range vector name from the immediately preceeding data card is assumed.
The field 3 specifies a row name defined in the ROWS section.
The field 4 specifies a range value ri (see the table below) for the row,

whose name is specified in the field 3.
The fields 5 and 6 are optional. If they are used, they should contain a

second pair “row name—range value” for the same range vector.
All range values for the current range vector should be specified before

range values for the next range vector. However, the order of rows in the
RANGES section may differ from the order of rows in the ROWS section.

For each double-side constraint specified in the RANGES section its
lower and upper bounds are determined as follows:

Row type Sign of ri Lower bound Upper bound
G + or − bi bi + |ri|
L + or − bi − |ri| bi
E + bi bi + |ri|
E − bi − |ri| bi

where bi is a right-hand side specified in the RHS section (if bi is not specified,
it is considered as zero), ri is a range value specified in the RANGES section.

B.8 BOUNDS section

The BOUNDS section should start with the indicator card, which contains
the word BOUNDS in the columns 1—6.

Each data card in the BOUNDS section specifies one (lower or upper)
bound for one structural variable (column). All these data cards have the
following format.

The indicator in the field 1 specifies the bound type:
LO lower bound;
UP upper bound;
FX fixed variable (lower and upper bounds are equal);
FR free variable (no bounds);
MI no lower bound (lower bound is “minus infinity”);
PL no upper bound (upper bound is “plus infinity”);

8This feature allows the user to specify several range vectors in the same MPS file.
However, before solving the problem a particular range vector should be chosen.
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The field 2 specifies a name of the bound vector9. If this field is empty,
the bound vector name from the immediately preceeding data card is as-
sumed.

The field 3 specifies a column name defined in the COLUMNS section.
The field 4 specifies a bound value. If the bound type in the field 1 differs

from LO, UP, and FX, the value in the field 4 is ignored and may be omitted.
The fields 5 and 6 are not used and should be empty.
All bound values for the current bound vector should be specified before

bound values for the next bound vector. However, the order of columns in
the BOUNDS section may differ from the order of columns in the COLUMNS
section. Specification of a lower bound should precede specification of an
upper bound for the same column (if both the lower and upper bounds are
explicitly specified).

By default, all columns (structural variables) are non-negative, i.e. have
zero lower bound and no upper bound. Lower (lj) and upper (uj) bounds of
some column (structural variable xj) are set in the following way, where sj

is a corresponding bound value explicitly specified in the BOUNDS section:
LO sets lj to sj ;
UP sets uj to sj ;
FX sets both lj and uj to sj ;
FR sets lj to −∞ and uj to +∞;
MI sets lj to −∞;
PL sets uj to +∞.

B.9 ENDATA indicator card

The ENDATA indicator card should be the last card of MPS file (except
optional comment cards, which may follow the ENDATA card). This card
should contain the word ENDATA in the columns 1—6.

B.10 Specifying objective function

It is impossible to explicitly specify the objective function and optimization
direction in the MPS file. However, the following implicit rule is used by
default: the first row of N type is considered as a row of the objective function
(i.e. the objective function is the corresponding auxiliary variable), which
should be minimized.

9This feature allows the user to specify several bound vectors in the same MPS file.
However, before solving the problem a particular bound vector should be chosen.
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GLPK also allows specifying a constant term of the objective function
as a right-hand side of the corresponding row in the RHS section.

B.11 Example of MPS file

In order to illustrate what the MPS format is, consider the following example
of LP problem:

minimize

value = .03 bin1 + .08 bin2 + .17 bin3 + .12 bin4 + .15 bin5 + .21 al+ .38 si

subject to linear constraints

yield= bin1 + bin2 + bin3 + bin4 + bin5 + al + si
FE = .15 bin1 + .04 bin2 + .02 bin3 + .04 bin4 + .02 bin5 + .01 al + .03 si
CU = .03 bin1 + .05 bin2 + .08 bin3 + .02 bin4 + .06 bin5 + .01 al
MN = .02 bin1 + .04 bin2 + .01 bin3 + .02 bin4 + .02 bin5

MG = .02 bin1 + .03 bin2 + .01 bin5

AL = .70 bin1 + .75 bin2 + .80 bin3 + .75 bin4 + .80 bin5 + .97 al
SI = .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 + .01 al + .97 si

and bounds of (auxiliary and structural) variables

yield = 2000 0 ≤ bin1 ≤ 200
−∞ < FE ≤ 60 0 ≤ bin2 ≤ 2500
−∞ < CU ≤ 100 400 ≤ bin3 ≤ 800
−∞ < MN ≤ 40 100 ≤ bin4 ≤ 700
−∞ < MG ≤ 30 0 ≤ bin5 ≤ 1500
1500 ≤ AL < +∞ 0 ≤ al < +∞
250 ≤ SI ≤ 300 0 ≤ si < +∞

A complete MPS file which specifies data for this example is shown below
(the first two comment lines show card positions).

*000000001111111111222222222233333333334444444444555555555566
*234567890123456789012345678901234567890123456789012345678901
NAME PLAN
ROWS
N VALUE
E YIELD
L FE
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L CU
L MN
L MG
G AL
L SI
COLUMNS

BIN1 VALUE .03000 YIELD 1.00000
FE .15000 CU .03000
MN .02000 MG .02000
AL .70000 SI .02000

BIN2 VALUE .08000 YIELD 1.00000
FE .04000 CU .05000
MN .04000 MG .03000
AL .75000 SI .06000

BIN3 VALUE .17000 YIELD 1.00000
FE .02000 CU .08000
MN .01000 AL .80000
SI .08000

BIN4 VALUE .12000 YIELD 1.00000
FE .04000 CU .02000
MN .02000 AL .75000
SI .12000

BIN5 VALUE .15000 YIELD 1.00000
FE .02000 CU .06000
MN .02000 MG .01000
AL .80000 SI .02000

ALUM VALUE .21000 YIELD 1.00000
FE .01000 CU .01000
AL .97000 SI .01000

SILICON VALUE .38000 YIELD 1.00000
FE .03000 SI .97000

RHS
RHS1 YIELD 2000.00000 FE 60.00000

CU 100.00000 MN 40.00000
SI 300.00000
MG 30.00000 AL 1500.00000

RANGES
RNG1 SI 50.00000

BOUNDS
UP BND1 BIN1 200.00000
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UP BIN2 2500.00000
LO BIN3 400.00000
UP BIN3 800.00000
LO BIN4 100.00000
UP BIN4 700.00000
UP BIN5 1500.00000
ENDATA

B.12 MIP features

The MPS format provides two ways for introducing integer variables into
the problem.

The first way is most general and based on using special marker cards
INTORG and INTEND. These marker cards are placed in the COLUMNS
section. The INTORG card indicates the start of a group of integer variables
(columns), and the card INTEND indicates the end of the group. The MPS
file may contain arbitrary number of the marker cards.

The marker cards have the same format as the data cards (see Section
B.1, page 130).

The fields 1, 2, and 6 are not used and should be empty.
The field 2 should contain a marker name. This name may be arbitrary.
The field 3 should contain the word ’MARKER’ (including apostrophes).
The field 5 should contain either the word ’INTORG’ (including apostro-

phes) for the marker card, which begins a group of integer columns, or the
word ’INTEND’ (including apostrophes) for the marker card, which ends the
group.

The second way is less general but more convenient in some cases. It
allows the user declaring integer columns using three additional types of
bounds, which are specified in the field 1 of data cards in the BOUNDS
section (see Section B.8, page 135):

LI lower integer. This bound type specifies that the corresponding
column (structural variable), whose name is specified in field 3, is
of integer kind. In this case an lower bound of the column should
be specified in field 4 (like in the case of LO bound type).

UI upper integer. This bound type specifies that the corresponding
column (structural variable), whose name is specified in field 3, is
of integer kind. In this case an upper bound of the column should
be specified in field 4 (like in the case of UP bound type).
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BV binary variable. This bound type specifies that the corresponding
column (structural variable), whose name is specified in the field
3, is of integer kind, its lower bound is zero, and its upper bound
is one (thus, such variable being of integer kind can have only two
values zero and one). In this case a numeric value specified in the
field 4 is ignored and may be omitted.

Consider the following example of MIP problem:

minimize

Z = 3x1 + 7x2 − x3 + x4

subject to linear constraints

r1 = 2x1 − x2 + x3 − x4

r2 = x1 − x2 − 6x3 + 4x4

r3 = 5x1 + 3x2 + x4

and bound of variables

1 ≤ r1 < +∞ 0 ≤ x1 ≤ 4 (continuous)
8 ≤ r2 < +∞ 2 ≤ x2 ≤ 5 (integer)
5 ≤ r3 < +∞ 0 ≤ x3 ≤ 1 (integer)

3 ≤ x4 ≤ 8 (continuous)

The corresponding MPS file may look like the following:

NAME SAMP1
ROWS
N Z
G R1
G R2
G R3

COLUMNS
X1 R1 2.0 R2 1.0
X1 R3 5.0 Z 3.0
MARK0001 ’MARKER’ ’INTORG’
X2 R1 -1.0 R2 -1.0
X2 R3 3.0 Z 7.0
X3 R1 1.0 R2 -6.0
X3 Z -1.0
MARK0002 ’MARKER’ ’INTEND’
X4 R1 -1.0 R2 4.0
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X4 R3 1.0 Z 1.0
RHS

RHS1 R1 1.0
RHS1 R2 8.0
RHS1 R3 5.0

BOUNDS
UP BND1 X1 4.0
LO BND1 X2 2.0
UP BND1 X2 5.0
UP BND1 X3 1.0
LO BND1 X4 3.0
UP BND1 X4 8.0
ENDATA

The same example may be coded without INTORG/INTEND markers
using the bound type UI for the variable x2 and the bound type BV for the
variable x3:

NAME SAMP2
ROWS
N Z
G R1
G R2
G R3
COLUMNS

X1 R1 2.0 R2 1.0
X1 R3 5.0 Z 3.0
X2 R1 -1.0 R2 -1.0
X2 R3 3.0 Z 7.0
X3 R1 1.0 R2 -6.0
X3 Z -1.0
X4 R1 -1.0 R2 4.0
X4 R3 1.0 Z 1.0

RHS
RHS1 R1 1.0
RHS1 R2 8.0
RHS1 R3 5.0

BOUNDS
UP BND1 X1 4.0
LO BND1 X2 2.0
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UI BND1 X2 5.0
BV BND1 X3
LO BND1 X4 3.0
UP BND1 X4 8.0
ENDATA

B.13 Specifying predefined basis

The MPS format can also be used to specify some predefined basis for an
LP problem, i.e. to specify which rows and columns are basic and which are
non-basic.

The order of a basis file in the MPS format is:
• NAME indicator card;
• data cards (can appear in arbitrary order);
• ENDATA indicator card.
Each data card specifies either a pair ”basic column—non-basic row” or

a non-basic column. All the data cards have the following format.
‘XL’ in the field 1 means that a column, whose name is given in the field

2, is basic, and a row, whose name is given in the field 3, is non-basic and
placed on its lower bound.

‘XU’ in the field 1 means that a column, whose name is given in the field
2, is basic, and a row, whose name is given in the field 3, is non-basic and
placed on its upper bound.

‘LL’ in the field 1 means that a column, whose name is given in the field
3, is non-basic and placed on its lower bound.

‘UL’ in the field 1 means that a column, whose name is given in the field
3, is non-basic and placed on its upper bound.

The field 2 contains a column name.
If the indicator given in the field 1 is ‘XL’ or ‘XU’, the field 3 contains a

row name. Otherwise, if the indicator is ‘LL’ or ‘UL’, the field 3 is not used
and should be empty.

The field 4, 5, and 6 are not used and should be empty.
A basis file in the MPS format acts like a patch: it doesn’t specify a basis

completely, instead that it is just shows in what a given basis differs from
the ”standard” basis, where all rows (auxiliary variables) are assumed to be
basic and all columns (structural variables) are assumed to be non-basic.

As an example here is a basis file that specifies an optimal basis for the
example LP problem given in Section B.11, Page 137:
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*000000001111111111222222222233333333334444444444555555555566
*234567890123456789012345678901234567890123456789012345678901
NAME PLAN
XL BIN2 YIELD
XL BIN3 FE
XL BIN4 MN
XL ALUM AL
XL SILICON SI
LL BIN1
LL BIN5
ENDATA
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Appendix C

CPLEX LP Format

C.1 Prelude

The CPLEX LP format1 is intended for coding LP/MIP problem data. It
is a row-oriented format that assumes the formulation of LP/MIP problem
(1.1)—(1.3) (see Section 1.1, page 9).

CPLEX LP file is a plain text file written in CPLEX LP format. Each
text line of this file may contain up to 255 characters2. Blank lines are
ignored. If a line contains the backslash character (\), this character and
everything that follows it until the end of line are considered as a comment
and also ignored.

An LP file is coded by the user using the following elements:
• keywords;
• symbolic names;
• numeric constants;
• delimiters;
• blanks.

1The CPLEX LP format was developed in the end of 1980’s by CPLEX Optimization,
Inc. as an input format for the CPLEX linear programming system. Although the CPLEX
LP format is not as widely used as the MPS format, being row-oriented it is more conve-
nient for coding mathematical programming models by human. This appendix describes
only the features of the CPLEX LP format which are implemented in the GLPK package.

2GLPK allows text lines of arbitrary length.
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Keywords which may be used in the LP file are the following:

minimize minimum min
maximize maximum max
subject to such that s.t. st. st
bounds bound
general generals gen
integer integers int
binary binaries bin
infinity inf
free
end

All the keywords are case insensitive. Keywords given above on the same
line are equivalent. Any keyword (except infinity, inf, and free) being
used in the LP file must start at the beginning of a text line.

Symbolic names are used to identify the objective function, constraints
(rows), and variables (columns). All symbolic names are case sensitive and
may contain up to 16 alphanumeric characters3 (a, . . . , z, A, . . . , Z, 0, . . . ,
9) as well as the following characters:

! " # $ % & ( ) / , . ; ? @ _ ‘ ’ { } | ~

with exception that no symbolic name can begin with a digit or a period.
Numeric constants are used to denote constraint and objective coeffi-

cients, right-hand sides of constraints, and bounds of variables. They are
coded in the standard form xxEsyy, where xx is a real number with optional
decimal point, s is a sign (+ or -), yy is an integer decimal exponent. Nu-
meric constants may contain arbitrary number of characters. The exponent
part is optional. The letter ‘E’ can be coded as ‘e’. If the sign s is omitted,
plus is assumed.

Delimiters that may be used in the LP file are the following:

:
+
-
< <= =<
> >= =>
=

3GLPK allows symbolic names having up to 255 characters.
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Delimiters given above on the same line are equivalent. The meaning of the
delimiters will be explained below.

Blanks are non-significant characters. They may be used freely to im-
prove readability of the LP file. Besides, blanks should be used to separate
elements from each other if there is no other way to do that (for example,
to separate a keyword from a following symbolic name).

The order of an LP file is:
• objective function definition;
• constraints section;
• bounds section;
• general, integer, and binary sections (can appear in arbitrary order);
• end keyword.
These components are discussed in following sections.

C.2 Objective function definition

The objective function definition must appear first in the LP file. It defines
the objective function and specifies the optimization direction.

The objective function definition has the following form:{
minimize
maximize

}
f : s c x s c x . . . s c x

where f is a symbolic name of the objective function, s is a sign + or -, c
is a numeric constant that denotes an objective coefficient, x is a symbolic
name of a variable.

If necessary, the objective function definition can be continued on as
many text lines as desired.

The name of the objective function is optional and may be omitted
(together with the semicolon that follows it). In this case the default name
‘obj’ is assigned to the objective function.

If the very first sign s is omitted, the sign plus is assumed. Other signs
cannot be omitted.

If some objective coefficient c is omitted, 1 is assumed.
Symbolic names x used to denote variables are recognized by context

and therefore needn’t to be declared somewhere else.
Here is an example of the objective function definition:

Minimize Z : - x1 + 2 x2 - 3.5 x3 + 4.997e3x(4) + x5 + x6 +
x7 - .01x8
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C.3 Constraints section

The constraints section must follow the objective function definition. It
defines a system of equality and/or inequality constraints.

The constraint section has the following form:

subject to
constraint1
constraint2

. . .
constraintm

where constrainti, i = 1, . . . ,m, is a particular constraint definition.
Each constraint definition can be continued on as many text lines as

desired. However, each constraint definition must begin on a new line except
the very first constraint definition which can begin on the same line as the
keyword ‘subject to’.

Constraint definitions have the following form:

r : s c x s c x . . . s c x


<=
>=
=

 b

where r is a symbolic name of a constraint, s is a sign + or -, c is a numeric
constant that denotes a constraint coefficient, x is a symbolic name of a
variable, b is a right-hand side.

The name r of a constraint (which is the name of the corresponding aux-
iliary variable) is optional and may be omitted (together with the semicolon
that follows it). In this case the default names like ‘r.nnn’ are assigned to
unnamed constraints.

The linear form s c x s c x . . . s c x in the left-hand side of a constraint
definition has exactly the same meaning as in the case of the objective
function definition (see above).

After the linear form one of the following delimiters that indicate the
constraint sense must be specified:

<= means ‘less than or equal to’
>= means ‘greater than or equal to’
= means ‘equal to’
The right hand side b is a numeric constant with an optional sign.
Here is an example of the constraints section:
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Subject To
one: y1 + 3 a1 - a2 - b >= 1.5
y2 + 2 a3 + 2

a4 - b >= -1.5
two : y4 + 3 a1 + 4 a5 - b <= +1
.20y5 + 5 a2 - b = 0
1.7 y6 - a6 + 5 a777 - b >= 1

(Should note that it is impossible to express ranged constraints in the
CPLEX LP format. Each a ranged constraint can be coded as two con-
straints with identical linear forms in the left-hand side, one of which spec-
ifies a lower bound and other does an upper one of the original ranged
constraint.)

C.4 Bounds section

The bounds section is intended to define bounds of variables. This section
is optional; if it is specified, it must follow the constraints section. If the
bound section is omitted, all variables are assumed to be non-negative (i.e.
that they have zero lower bound and no upper bound).

The bounds section has the following form:

bounds
definition1

definition2

. . .
definitionp

where definitionk, k = 1, . . . , p, is a particular bound definition.
Each bound definition must begin on a new line4 except the very first

bound definition which can begin on the same line as the keyword ‘bounds’.
Syntactically constraint definitions can have one of the following six

forms:

x >= l specifies a lower bound
l <= x specifies a lower bound
x <= u specifies an upper bound
l <= x <= u specifies both lower and upper bounds
x = t specifies a fixed value
x free specifies free variable

4The GLPK implementation allows several bound definitions to be placed on the same
line.
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where x is a symbolic name of a variable, l is a numeric constant with
an optional sign that defines a lower bound of the variable or -inf that
means that the variable has no lower bound, u is a numeric constant with
an optional sign that defines an upper bound of the variable or +inf that
means that the variable has no upper bound, t is a numeric constant with
an optional sign that defines a fixed value of the variable.

By default all variables are non-negative, i.e. have zero lower bound
and no upper bound. Therefore definitions of these default bounds can be
omitted in the bounds section.

Here is an example of the bounds section:

Bounds
-inf <= a1 <= 100
-100 <= a2
b <= 100
x2 = +123.456
x3 free

C.5 General, integer, and binary sections

The general, integer, and binary sections are intended to define some vari-
ables as integer or binary. All these sections are optional and needed only
in case of MIP problems. If they are specified, they must follow the bounds
section or, if the latter is omitted, the constraints section.

All the general, integer, and binary sections have the same form as fol-
lows: 

general
integer
binary


x1

x2

. . .
xq

where xk is a symbolic name of variable, k = 1, . . . , q.
Each symbolic name must begin on a new line5 except the very first

symbolic name which can begin on the same line as the keyword ‘general’,
‘integer’, or ‘binary’.

5The GLPK implementation allows several symbolic names to be placed on the same
line.
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If a variable appears in the general or the integer section, it is assumed to
be general integer variable. If a variable appears in the binary section, it is
assumed to be binary variable, i.e. an integer variable whose lower bound is
zero and upper bound is one. (Note that if bounds of a variable are specified
in the bounds section and then the variable appears in the binary section,
its previously specified bounds are ignored.)

Here is an example of the integer section:

Integer
z12
z22
z35

C.6 End keyword

The keyword ‘end’ is intended to end the LP file. It must begin on a separate
line and no other elements (except comments and blank lines) must follow
it. Although this keyword is optional, it is strongly recommended to include
it in the LP file.

C.7 Example of CPLEX LP file

Here is a complete example of CPLEX LP file that corresponds to the ex-
ample given in Section B.11, page 137.

\* plan.lp *\

Minimize

value: .03 bin1 + .08 bin2 + .17 bin3 + .12 bin4 + .15 bin5 +

.21 alum + .38 silicon

Subject To

yield: bin1 + bin2 + bin3 + bin4 + bin5 +

alum + silicon = 2000

fe: .15 bin1 + .04 bin2 + .02 bin3 + .04 bin4 + .02 bin5 +

.01 alum + .03 silicon <= 60

cu: .03 bin1 + .05 bin2 + .08 bin3 + .02 bin4 + .06 bin5 +

.01 alum <= 100

mn: .02 bin1 + .04 bin2 + .01 bin3 + .02 bin4 + .02 bin5 <= 40
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mg: .02 bin1 + .03 bin2 + .01 bin5 <= 30

al: .70 bin1 + .75 bin2 + .80 bin3 + .75 bin4 + .80 bin5 +

.97 alum >= 1500

si1: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 +

.01 alum + .97 silicon >= 250

si2: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 +

.01 alum + .97 silicon <= 300

Bounds

bin1 <= 200

bin2 <= 2500

400 <= bin3 <= 800

100 <= bin4 <= 700

bin5 <= 1500

End

\* eof *\
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Appendix D

Stand-alone LP/MIP Solver

The GLPK package includes the program glpsol which is a stand-alone
LP/MIP solver. This program can be invoked from the command line of
from the shell to read LP/MIP problem data in any format supported by
GLPK, solve the problem, and write the obtained problem solution to a text
file in plain format.

Usage

glpsol [options. . . ] [filename]

General options

--mps read LP/MIP problem in fixed MPS format
--freemps read LP/MIP problem in free MPS format (default)
--cpxlp read LP/MIP problem in CPLEX LP format
--math read LP/MIP model written in GNU MathProg mod-

eling language
-m filename, --model filename

read model section and optional data section from file-
name (the same as --math)

-d filename, --data filename
read data section from filename (for --math only); if
model file also has data section, that section is ignored

-y filename, --display filename
send display output to filename (for --math only); by
default the output is sent to stdout
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--min minimization
--max maximization
--scale scale problem (default)
--noscale do not scale problem
--simplex use simplex method (default)
--interior use interior point method (for pure LP only)
-o filename, --output filename

write solution to filename in plain text format
--bounds filename

write sensitivity bounds to filename in plain text format
(LP only)

--tmlim nnn limit solution time to nnn seconds (--tmlim 0 allows
obtaining solution at initial point)

--memlim nnn limit available memory to nnn Megabytes
--check do not solve problem, check input data only
--name probname change problem name to probname
--plain use plain names of rows and columns (default)
--orig try using original names of rows and columns
--wmps filename write problem to filename in fixed MPS format
--wfreemps filename

write problem to filename in free MPS format
--wcpxlp filename

write problem to filename in CPLEX LP format
--wtxt filename write problem to filename in plain text format
-h, --help display this help information and exit
-v, --version display program version and exit

LP basis factorization option

--luf LU + Forrest–Tomlin update
(faster, less stable; default)

--cbg LU + Schur complement + Bartels–Golub update
(slower, more stable)

--cbg LU + Schur complement + Givens rotation update
(slower, more stable)

Options specific to simplex method

--std use standard initial basis of all slacks
--adv use advanced initial basis (default)
--bib use Bixby’s initial basis
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--bas filename read initial basis from filename in MPS format
--steep use steepest edge technique (default)
--nosteep use standard “textbook” pricing
--relax use Harris’ two-pass ratio test (default)
--norelax use standard “textbook” ratio test
--presol use LP presolver (default; assumes --scale and --adv)
--nopresol do not use LP presolver
--exact use simplex method based on exact arithmetic
--xcheck check final basis using exact arithmetic
--wbas filename write final basis to filename in MPS format

Options specific to MIP

--nomip consider all integer variables as continuous (allows solv-
ing MIP as pure LP)

--first branch on first integer variable
--last branch on last integer variable
--drtom branch using heuristic by Driebeck and Tomlin (default)
--mostf branch on most fractional varaible
--dfs backtrack using depth first search
--bfs backtrack using breadth first search
--bestp backtrack using the best projection heuristic (default)
--bestb backtrack using node with best local bound
--intopt use advanced MIP solver (enables MIP presolving)
--binarize replace general integer variables by binary ones (as-

sumes --intopt)
--cover generate mixed cover cuts
--clique generate clique cuts
--gomory generate Gomory’s mixed integer cuts
--mir generate MIR (mixed integer rounding) cuts
--cuts generate cuts of all classes above (assumes --intopt)

For description of the MPS format see Appendix B, page 130.

For description of the CPLEX LP format see Appendix C, page 144.

For description of the modeling language see the document “Modeling Lan-
guage GNU MathProg: Language Reference” included in the GLPK distri-
bution.
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